Properties

Label 10.18.a
Level $10$
Weight $18$
Character orbit 10.a
Rep. character $\chi_{10}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $4$
Sturm bound $27$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(27\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_0(10))\).

Total New Old
Modular forms 27 7 20
Cusp forms 23 7 16
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(3\)
Minus space\(-\)\(4\)

Trace form

\( 7 q - 256 q^{2} - 4964 q^{3} + 458752 q^{4} - 390625 q^{5} + 2628608 q^{6} + 49640552 q^{7} - 16777216 q^{8} + 446713291 q^{9} - 100000000 q^{10} - 302591916 q^{11} - 325320704 q^{12} - 5259218734 q^{13}+ \cdots - 44\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
10.18.a.a 10.a 1.a $1$ $18.322$ \(\Q\) None 10.18.a.a \(256\) \(-14976\) \(390625\) \(14808668\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{8}q^{2}-14976q^{3}+2^{16}q^{4}+5^{8}q^{5}+\cdots\)
10.18.a.b 10.a 1.a $2$ $18.322$ \(\Q(\sqrt{36061}) \) None 10.18.a.b \(-512\) \(-6308\) \(-781250\) \(6543844\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{8}q^{2}+(-3154-\beta )q^{3}+2^{16}q^{4}+\cdots\)
10.18.a.c 10.a 1.a $2$ $18.322$ \(\Q(\sqrt{83281}) \) None 10.18.a.c \(-512\) \(-1308\) \(781250\) \(603844\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{8}q^{2}+(-654-\beta )q^{3}+2^{16}q^{4}+\cdots\)
10.18.a.d 10.a 1.a $2$ $18.322$ \(\Q(\sqrt{2941}) \) None 10.18.a.d \(512\) \(17628\) \(-781250\) \(27684196\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{8}q^{2}+(8814-\beta )q^{3}+2^{16}q^{4}+\cdots\)

Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces

\( S_{18}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{18}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)