Defining parameters
Level: | \( N \) | \(=\) | \( 10 = 2 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 18 \) |
Character orbit: | \([\chi]\) | \(=\) | 10.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(27\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_0(10))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 27 | 7 | 20 |
Cusp forms | 23 | 7 | 16 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
10.18.a.a | $1$ | $18.322$ | \(\Q\) | None | \(256\) | \(-14976\) | \(390625\) | \(14808668\) | $-$ | $-$ | \(q+2^{8}q^{2}-14976q^{3}+2^{16}q^{4}+5^{8}q^{5}+\cdots\) | |
10.18.a.b | $2$ | $18.322$ | \(\Q(\sqrt{36061}) \) | None | \(-512\) | \(-6308\) | \(-781250\) | \(6543844\) | $+$ | $+$ | \(q-2^{8}q^{2}+(-3154-\beta )q^{3}+2^{16}q^{4}+\cdots\) | |
10.18.a.c | $2$ | $18.322$ | \(\Q(\sqrt{83281}) \) | None | \(-512\) | \(-1308\) | \(781250\) | \(603844\) | $+$ | $-$ | \(q-2^{8}q^{2}+(-654-\beta )q^{3}+2^{16}q^{4}+\cdots\) | |
10.18.a.d | $2$ | $18.322$ | \(\Q(\sqrt{2941}) \) | None | \(512\) | \(17628\) | \(-781250\) | \(27684196\) | $-$ | $+$ | \(q+2^{8}q^{2}+(8814-\beta )q^{3}+2^{16}q^{4}+\cdots\) |
Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces
\( S_{18}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{18}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)