Properties

Label 10.4.a
Level $10$
Weight $4$
Character orbit 10.a
Rep. character $\chi_{10}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(10))\).

Total New Old
Modular forms 7 1 6
Cusp forms 3 1 2
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(1\)
Minus space\(-\)\(0\)

Trace form

\( q + 2 q^{2} - 8 q^{3} + 4 q^{4} + 5 q^{5} - 16 q^{6} - 4 q^{7} + 8 q^{8} + 37 q^{9} + 10 q^{10} + 12 q^{11} - 32 q^{12} - 58 q^{13} - 8 q^{14} - 40 q^{15} + 16 q^{16} + 66 q^{17} + 74 q^{18} - 100 q^{19}+ \cdots + 444 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(10))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
10.4.a.a 10.a 1.a $1$ $0.590$ \(\Q\) None 10.4.a.a \(2\) \(-8\) \(5\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-8q^{3}+4q^{4}+5q^{5}-2^{4}q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(10))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(10)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)