Properties

Label 100.6.i
Level 100100
Weight 66
Character orbit 100.i
Rep. character χ100(9,)\chi_{100}(9,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 4848
Newform subspaces 11
Sturm bound 9090
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 100=2252 100 = 2^{2} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 100.i (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 25 25
Character field: Q(ζ10)\Q(\zeta_{10})
Newform subspaces: 1 1
Sturm bound: 9090
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M6(100,[χ])M_{6}(100, [\chi]).

Total New Old
Modular forms 312 48 264
Cusp forms 288 48 240
Eisenstein series 24 0 24

Trace form

48q135q5+872q9+5q11+20q15955q17+1912q19+4818q211420q238605q2513800q274408q295532q31+28465q332165q35+3540q37++532180q99+O(q100) 48 q - 135 q^{5} + 872 q^{9} + 5 q^{11} + 20 q^{15} - 955 q^{17} + 1912 q^{19} + 4818 q^{21} - 1420 q^{23} - 8605 q^{25} - 13800 q^{27} - 4408 q^{29} - 5532 q^{31} + 28465 q^{33} - 2165 q^{35} + 3540 q^{37}+ \cdots + 532180 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(100,[χ])S_{6}^{\mathrm{new}}(100, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
100.6.i.a 100.i 25.e 4848 16.03816.038 None 100.6.i.a 00 00 135-135 00 SU(2)[C10]\mathrm{SU}(2)[C_{10}]

Decomposition of S6old(100,[χ])S_{6}^{\mathrm{old}}(100, [\chi]) into lower level spaces

S6old(100,[χ]) S_{6}^{\mathrm{old}}(100, [\chi]) \simeq S6new(25,[χ])S_{6}^{\mathrm{new}}(25, [\chi])3^{\oplus 3}\oplusS6new(50,[χ])S_{6}^{\mathrm{new}}(50, [\chi])2^{\oplus 2}