Defining parameters
Level: | \( N \) | = | \( 100 = 2^{2} \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 9 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(5400\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(100))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2470 | 1313 | 1157 |
Cusp forms | 2330 | 1271 | 1059 |
Eisenstein series | 140 | 42 | 98 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(100))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(100))\) into lower level spaces
\( S_{9}^{\mathrm{old}}(\Gamma_1(100)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 1}\)