Properties

Label 100.9
Level 100
Weight 9
Dimension 1271
Nonzero newspaces 6
Newform subspaces 18
Sturm bound 5400
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 18 \)
Sturm bound: \(5400\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(100))\).

Total New Old
Modular forms 2470 1313 1157
Cusp forms 2330 1271 1059
Eisenstein series 140 42 98

Trace form

\( 1271 q - 10 q^{2} + 140 q^{3} + 142 q^{4} - 910 q^{5} + 2030 q^{6} + 4060 q^{7} - 6010 q^{8} - 289 q^{9} + 24464 q^{10} + 840 q^{11} - 21690 q^{12} - 134910 q^{13} - 172826 q^{14} + 48478 q^{15} + 178062 q^{16}+ \cdots + 8834530 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(100))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
100.9.b \(\chi_{100}(51, \cdot)\) 100.9.b.a 1 1
100.9.b.b 2
100.9.b.c 2
100.9.b.d 16
100.9.b.e 16
100.9.b.f 16
100.9.b.g 20
100.9.d \(\chi_{100}(99, \cdot)\) 100.9.d.a 2 1
100.9.d.b 4
100.9.d.c 32
100.9.d.d 32
100.9.f \(\chi_{100}(57, \cdot)\) 100.9.f.a 4 2
100.9.f.b 8
100.9.f.c 12
100.9.h \(\chi_{100}(19, \cdot)\) 100.9.h.a 472 4
100.9.j \(\chi_{100}(11, \cdot)\) 100.9.j.a 8 4
100.9.j.b 464
100.9.k \(\chi_{100}(13, \cdot)\) 100.9.k.a 160 8

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(100))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(100)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 1}\)