Defining parameters
Level: | \( N \) | \(=\) | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1008.cg (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1008, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 816 | 82 | 734 |
Cusp forms | 720 | 78 | 642 |
Eisenstein series | 96 | 4 | 92 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(1008, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(1008, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1008, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)