Properties

Label 1008.4.a
Level 10081008
Weight 44
Character orbit 1008.a
Rep. character χ1008(1,)\chi_{1008}(1,\cdot)
Character field Q\Q
Dimension 4545
Newform subspaces 3434
Sturm bound 768768
Trace bound 1313

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1008=24327 1008 = 2^{4} \cdot 3^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1008.a (trivial)
Character field: Q\Q
Newform subspaces: 34 34
Sturm bound: 768768
Trace bound: 1313
Distinguishing TpT_p: 55, 1111

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(1008))M_{4}(\Gamma_0(1008)).

Total New Old
Modular forms 600 45 555
Cusp forms 552 45 507
Eisenstein series 48 0 48

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

223377FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++78784474747272446868660066
++++--72724468686666446262660066
++-++-72727765656666775959660066
++--++78787771717272776565660066
-++++-76764472727070446666660066
-++-++74746668686868666262660066
--++++74747767676868776161660066
----76766670707070666464660066
Plus space++304304242428028028028024242562562424002424
Minus space-296296212127527527227221212512512424002424

Trace form

45q+2q5+7q7+56q1146q13+50q1724q19220q23+1147q25242q29+264q31+210q35+62q37+138q41892q431536q47+2205q49++906q97+O(q100) 45 q + 2 q^{5} + 7 q^{7} + 56 q^{11} - 46 q^{13} + 50 q^{17} - 24 q^{19} - 220 q^{23} + 1147 q^{25} - 242 q^{29} + 264 q^{31} + 210 q^{35} + 62 q^{37} + 138 q^{41} - 892 q^{43} - 1536 q^{47} + 2205 q^{49}+ \cdots + 906 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(1008))S_{4}^{\mathrm{new}}(\Gamma_0(1008)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 7
1008.4.a.a 1008.a 1.a 11 59.47459.474 Q\Q None 126.4.a.e 00 00 22-22 77 - ++ - SU(2)\mathrm{SU}(2) q22q5+7q7+26q1154q13+q-22q^{5}+7q^{7}+26q^{11}-54q^{13}+\cdots
1008.4.a.b 1008.a 1.a 11 59.47459.474 Q\Q None 42.4.a.a 00 00 18-18 7-7 - - ++ SU(2)\mathrm{SU}(2) q18q57q772q1134q13+q-18q^{5}-7q^{7}-72q^{11}-34q^{13}+\cdots
1008.4.a.c 1008.a 1.a 11 59.47459.474 Q\Q None 7.4.a.a 00 00 16-16 77 - - - SU(2)\mathrm{SU}(2) q24q5+7q78q11+28q13+q-2^{4}q^{5}+7q^{7}-8q^{11}+28q^{13}+\cdots
1008.4.a.d 1008.a 1.a 11 59.47459.474 Q\Q None 84.4.a.b 00 00 14-14 77 - - - SU(2)\mathrm{SU}(2) q14q5+7q7+4q11+54q13+q-14q^{5}+7q^{7}+4q^{11}+54q^{13}+\cdots
1008.4.a.e 1008.a 1.a 11 59.47459.474 Q\Q None 56.4.a.b 00 00 8-8 77 ++ - - SU(2)\mathrm{SU}(2) q8q5+7q7+56q1128q13+q-8q^{5}+7q^{7}+56q^{11}-28q^{13}+\cdots
1008.4.a.f 1008.a 1.a 11 59.47459.474 Q\Q None 28.4.a.b 00 00 6-6 7-7 - - ++ SU(2)\mathrm{SU}(2) q6q57q712q1182q13+q-6q^{5}-7q^{7}-12q^{11}-82q^{13}+\cdots
1008.4.a.g 1008.a 1.a 11 59.47459.474 Q\Q None 126.4.a.b 00 00 6-6 7-7 - ++ ++ SU(2)\mathrm{SU}(2) q6q57q7+30q11+2q1366q17+q-6q^{5}-7q^{7}+30q^{11}+2q^{13}-66q^{17}+\cdots
1008.4.a.h 1008.a 1.a 11 59.47459.474 Q\Q None 84.4.a.a 00 00 6-6 7-7 - - ++ SU(2)\mathrm{SU}(2) q6q57q7+62q11+62q13+q-6q^{5}-7q^{7}+6^{2}q^{11}+62q^{13}+\cdots
1008.4.a.i 1008.a 1.a 11 59.47459.474 Q\Q None 168.4.a.c 00 00 4-4 77 ++ - - SU(2)\mathrm{SU}(2) q4q5+7q726q11+2q13+62q17+q-4q^{5}+7q^{7}-26q^{11}+2q^{13}+6^{2}q^{17}+\cdots
1008.4.a.j 1008.a 1.a 11 59.47459.474 Q\Q None 42.4.a.b 00 00 2-2 77 - - - SU(2)\mathrm{SU}(2) q2q5+7q78q1142q13+2q17+q-2q^{5}+7q^{7}-8q^{11}-42q^{13}+2q^{17}+\cdots
1008.4.a.k 1008.a 1.a 11 59.47459.474 Q\Q None 168.4.a.b 00 00 22 7-7 ++ - ++ SU(2)\mathrm{SU}(2) q+2q57q7+12q1166q13+q+2q^{5}-7q^{7}+12q^{11}-66q^{13}+\cdots
1008.4.a.l 1008.a 1.a 11 59.47459.474 Q\Q None 168.4.a.f 00 00 22 77 ++ - - SU(2)\mathrm{SU}(2) q+2q5+7q7+52q11+86q13+q+2q^{5}+7q^{7}+52q^{11}+86q^{13}+\cdots
1008.4.a.m 1008.a 1.a 11 59.47459.474 Q\Q None 21.4.a.b 00 00 44 77 - - - SU(2)\mathrm{SU}(2) q+4q5+7q7+62q1162q13+q+4q^{5}+7q^{7}+62q^{11}-62q^{13}+\cdots
1008.4.a.n 1008.a 1.a 11 59.47459.474 Q\Q None 126.4.a.b 00 00 66 7-7 - ++ ++ SU(2)\mathrm{SU}(2) q+6q57q730q11+2q13+66q17+q+6q^{5}-7q^{7}-30q^{11}+2q^{13}+66q^{17}+\cdots
1008.4.a.o 1008.a 1.a 11 59.47459.474 Q\Q None 28.4.a.a 00 00 88 77 - - - SU(2)\mathrm{SU}(2) q+8q5+7q740q1112q13+q+8q^{5}+7q^{7}-40q^{11}-12q^{13}+\cdots
1008.4.a.p 1008.a 1.a 11 59.47459.474 Q\Q None 168.4.a.a 00 00 1010 7-7 ++ - ++ SU(2)\mathrm{SU}(2) q+10q57q712q11+30q13+q+10q^{5}-7q^{7}-12q^{11}+30q^{13}+\cdots
1008.4.a.q 1008.a 1.a 11 59.47459.474 Q\Q None 168.4.a.e 00 00 1010 77 ++ - - SU(2)\mathrm{SU}(2) q+10q5+7q752q1110q13+q+10q^{5}+7q^{7}-52q^{11}-10q^{13}+\cdots
1008.4.a.r 1008.a 1.a 11 59.47459.474 Q\Q None 14.4.a.b 00 00 1212 7-7 - - ++ SU(2)\mathrm{SU}(2) q+12q57q7+48q11+56q13+q+12q^{5}-7q^{7}+48q^{11}+56q^{13}+\cdots
1008.4.a.s 1008.a 1.a 11 59.47459.474 Q\Q None 14.4.a.a 00 00 1414 77 - - - SU(2)\mathrm{SU}(2) q+14q5+7q728q11+18q13+q+14q^{5}+7q^{7}-28q^{11}+18q^{13}+\cdots
1008.4.a.t 1008.a 1.a 11 59.47459.474 Q\Q None 168.4.a.d 00 00 1616 7-7 ++ - ++ SU(2)\mathrm{SU}(2) q+24q57q718q1154q13+q+2^{4}q^{5}-7q^{7}-18q^{11}-54q^{13}+\cdots
1008.4.a.u 1008.a 1.a 11 59.47459.474 Q\Q None 56.4.a.a 00 00 1616 77 ++ - - SU(2)\mathrm{SU}(2) q+24q5+7q7+24q1168q13+q+2^{4}q^{5}+7q^{7}+24q^{11}-68q^{13}+\cdots
1008.4.a.v 1008.a 1.a 11 59.47459.474 Q\Q None 21.4.a.a 00 00 1818 7-7 - - ++ SU(2)\mathrm{SU}(2) q+18q57q762q1134q13+q+18q^{5}-7q^{7}-6^{2}q^{11}-34q^{13}+\cdots
1008.4.a.w 1008.a 1.a 11 59.47459.474 Q\Q None 126.4.a.e 00 00 2222 77 - ++ - SU(2)\mathrm{SU}(2) q+22q5+7q726q1154q13+q+22q^{5}+7q^{7}-26q^{11}-54q^{13}+\cdots
1008.4.a.x 1008.a 1.a 22 59.47459.474 Q(57)\Q(\sqrt{57}) None 56.4.a.c 00 00 22-22 14-14 ++ - ++ SU(2)\mathrm{SU}(2) q+(11β)q57q7+(18+6β)q11+q+(-11-\beta )q^{5}-7q^{7}+(18+6\beta )q^{11}+\cdots
1008.4.a.y 1008.a 1.a 22 59.47459.474 Q(177)\Q(\sqrt{177}) None 168.4.a.h 00 00 14-14 14-14 ++ - ++ SU(2)\mathrm{SU}(2) q+(7β)q57q7+(93β)q11+q+(-7-\beta )q^{5}-7q^{7}+(9-3\beta )q^{11}+\cdots
1008.4.a.z 1008.a 1.a 22 59.47459.474 Q(22)\Q(\sqrt{22}) None 504.4.a.k 00 00 12-12 1414 ++ ++ - SU(2)\mathrm{SU}(2) q+(6+β)q5+7q7+(2+β)q11+q+(-6+\beta )q^{5}+7q^{7}+(2+\beta )q^{11}+\cdots
1008.4.a.ba 1008.a 1.a 22 59.47459.474 Q(57)\Q(\sqrt{57}) None 21.4.a.c 00 00 6-6 14-14 - - ++ SU(2)\mathrm{SU}(2) q+(3β)q57q7+(3+5β)q11+q+(-3-\beta )q^{5}-7q^{7}+(-3+5\beta )q^{11}+\cdots
1008.4.a.bb 1008.a 1.a 22 59.47459.474 Q(30)\Q(\sqrt{30}) None 504.4.a.l 00 00 4-4 14-14 ++ ++ ++ SU(2)\mathrm{SU}(2) q+(2+β)q57q7+(18+3β)q11+q+(-2+\beta )q^{5}-7q^{7}+(18+3\beta )q^{11}+\cdots
1008.4.a.bc 1008.a 1.a 22 59.47459.474 Q(7)\Q(\sqrt{7}) None 252.4.a.f 00 00 00 14-14 - ++ ++ SU(2)\mathrm{SU}(2) q+βq57q7βq11+26q135βq17+q+\beta q^{5}-7q^{7}-\beta q^{11}+26q^{13}-5\beta q^{17}+\cdots
1008.4.a.bd 1008.a 1.a 22 59.47459.474 Q(7)\Q(\sqrt{7}) None 252.4.a.e 00 00 00 1414 - ++ - SU(2)\mathrm{SU}(2) q+βq5+7q7+13βq1130q13+q+\beta q^{5}+7q^{7}+13\beta q^{11}-30q^{13}+\cdots
1008.4.a.be 1008.a 1.a 22 59.47459.474 Q(19)\Q(\sqrt{19}) None 63.4.a.d 00 00 00 1414 - ++ - SU(2)\mathrm{SU}(2) q+βq5+7q7+5βq11+82q13+q+\beta q^{5}+7q^{7}+5\beta q^{11}+82q^{13}+\cdots
1008.4.a.bf 1008.a 1.a 22 59.47459.474 Q(30)\Q(\sqrt{30}) None 504.4.a.l 00 00 44 14-14 ++ ++ ++ SU(2)\mathrm{SU}(2) q+(2+β)q57q7+(18+3β)q11+q+(2+\beta )q^{5}-7q^{7}+(-18+3\beta )q^{11}+\cdots
1008.4.a.bg 1008.a 1.a 22 59.47459.474 Q(337)\Q(\sqrt{337}) None 168.4.a.g 00 00 66 1414 ++ - - SU(2)\mathrm{SU}(2) q+(3+β)q5+7q7+(13+β)q11+(48+)q13+q+(3+\beta )q^{5}+7q^{7}+(13+\beta )q^{11}+(48+\cdots)q^{13}+\cdots
1008.4.a.bh 1008.a 1.a 22 59.47459.474 Q(22)\Q(\sqrt{22}) None 504.4.a.k 00 00 1212 1414 ++ ++ - SU(2)\mathrm{SU}(2) q+(6+β)q5+7q7+(2+β)q11+q+(6+\beta )q^{5}+7q^{7}+(-2+\beta )q^{11}+\cdots

Decomposition of S4old(Γ0(1008))S_{4}^{\mathrm{old}}(\Gamma_0(1008)) into lower level spaces

S4old(Γ0(1008)) S_{4}^{\mathrm{old}}(\Gamma_0(1008)) \simeq S4new(Γ0(6))S_{4}^{\mathrm{new}}(\Gamma_0(6))16^{\oplus 16}\oplusS4new(Γ0(7))S_{4}^{\mathrm{new}}(\Gamma_0(7))15^{\oplus 15}\oplusS4new(Γ0(8))S_{4}^{\mathrm{new}}(\Gamma_0(8))12^{\oplus 12}\oplusS4new(Γ0(9))S_{4}^{\mathrm{new}}(\Gamma_0(9))10^{\oplus 10}\oplusS4new(Γ0(12))S_{4}^{\mathrm{new}}(\Gamma_0(12))12^{\oplus 12}\oplusS4new(Γ0(14))S_{4}^{\mathrm{new}}(\Gamma_0(14))12^{\oplus 12}\oplusS4new(Γ0(16))S_{4}^{\mathrm{new}}(\Gamma_0(16))6^{\oplus 6}\oplusS4new(Γ0(18))S_{4}^{\mathrm{new}}(\Gamma_0(18))8^{\oplus 8}\oplusS4new(Γ0(21))S_{4}^{\mathrm{new}}(\Gamma_0(21))10^{\oplus 10}\oplusS4new(Γ0(24))S_{4}^{\mathrm{new}}(\Gamma_0(24))8^{\oplus 8}\oplusS4new(Γ0(28))S_{4}^{\mathrm{new}}(\Gamma_0(28))9^{\oplus 9}\oplusS4new(Γ0(36))S_{4}^{\mathrm{new}}(\Gamma_0(36))6^{\oplus 6}\oplusS4new(Γ0(42))S_{4}^{\mathrm{new}}(\Gamma_0(42))8^{\oplus 8}\oplusS4new(Γ0(48))S_{4}^{\mathrm{new}}(\Gamma_0(48))4^{\oplus 4}\oplusS4new(Γ0(56))S_{4}^{\mathrm{new}}(\Gamma_0(56))6^{\oplus 6}\oplusS4new(Γ0(63))S_{4}^{\mathrm{new}}(\Gamma_0(63))5^{\oplus 5}\oplusS4new(Γ0(72))S_{4}^{\mathrm{new}}(\Gamma_0(72))4^{\oplus 4}\oplusS4new(Γ0(84))S_{4}^{\mathrm{new}}(\Gamma_0(84))6^{\oplus 6}\oplusS4new(Γ0(112))S_{4}^{\mathrm{new}}(\Gamma_0(112))3^{\oplus 3}\oplusS4new(Γ0(126))S_{4}^{\mathrm{new}}(\Gamma_0(126))4^{\oplus 4}\oplusS4new(Γ0(144))S_{4}^{\mathrm{new}}(\Gamma_0(144))2^{\oplus 2}\oplusS4new(Γ0(168))S_{4}^{\mathrm{new}}(\Gamma_0(168))4^{\oplus 4}\oplusS4new(Γ0(252))S_{4}^{\mathrm{new}}(\Gamma_0(252))3^{\oplus 3}\oplusS4new(Γ0(336))S_{4}^{\mathrm{new}}(\Gamma_0(336))2^{\oplus 2}\oplusS4new(Γ0(504))S_{4}^{\mathrm{new}}(\Gamma_0(504))2^{\oplus 2}