Properties

Label 1014.2.m
Level $1014$
Weight $2$
Character orbit 1014.m
Rep. character $\chi_{1014}(79,\cdot)$
Character field $\Q(\zeta_{13})$
Dimension $336$
Sturm bound $364$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.m (of order \(13\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 169 \)
Character field: \(\Q(\zeta_{13})\)
Sturm bound: \(364\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1014, [\chi])\).

Total New Old
Modular forms 2232 336 1896
Cusp forms 2136 336 1800
Eisenstein series 96 0 96

Trace form

\( 336 q + 2 q^{2} + 2 q^{3} - 28 q^{4} + 4 q^{5} + 4 q^{7} + 2 q^{8} - 28 q^{9} + 8 q^{10} + 16 q^{11} + 2 q^{12} - 14 q^{13} + 8 q^{14} + 8 q^{15} - 28 q^{16} + 12 q^{17} + 2 q^{18} + 28 q^{19} + 4 q^{20}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1014, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1014, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1014, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)