Defining parameters
Level: | \( N \) | \(=\) | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1014.m (of order \(13\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 169 \) |
Character field: | \(\Q(\zeta_{13})\) | ||
Sturm bound: | \(364\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1014, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2232 | 336 | 1896 |
Cusp forms | 2136 | 336 | 1800 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1014, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1014, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1014, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)