Defining parameters
Level: | \( N \) | = | \( 1024 = 2^{10} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(131072\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1024))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 33600 | 18672 | 14928 |
Cusp forms | 31937 | 18192 | 13745 |
Eisenstein series | 1663 | 480 | 1183 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1024))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
1024.2.a | \(\chi_{1024}(1, \cdot)\) | 1024.2.a.a | 2 | 1 |
1024.2.a.b | 2 | |||
1024.2.a.c | 2 | |||
1024.2.a.d | 2 | |||
1024.2.a.e | 2 | |||
1024.2.a.f | 2 | |||
1024.2.a.g | 4 | |||
1024.2.a.h | 4 | |||
1024.2.a.i | 4 | |||
1024.2.a.j | 4 | |||
1024.2.b | \(\chi_{1024}(513, \cdot)\) | 1024.2.b.a | 2 | 1 |
1024.2.b.b | 2 | |||
1024.2.b.c | 2 | |||
1024.2.b.d | 2 | |||
1024.2.b.e | 2 | |||
1024.2.b.f | 2 | |||
1024.2.b.g | 8 | |||
1024.2.b.h | 8 | |||
1024.2.e | \(\chi_{1024}(257, \cdot)\) | 1024.2.e.a | 2 | 2 |
1024.2.e.b | 2 | |||
1024.2.e.c | 2 | |||
1024.2.e.d | 2 | |||
1024.2.e.e | 2 | |||
1024.2.e.f | 2 | |||
1024.2.e.g | 4 | |||
1024.2.e.h | 4 | |||
1024.2.e.i | 4 | |||
1024.2.e.j | 4 | |||
1024.2.e.k | 4 | |||
1024.2.e.l | 4 | |||
1024.2.e.m | 4 | |||
1024.2.e.n | 4 | |||
1024.2.e.o | 4 | |||
1024.2.e.p | 8 | |||
1024.2.g | \(\chi_{1024}(129, \cdot)\) | 1024.2.g.a | 16 | 4 |
1024.2.g.b | 16 | |||
1024.2.g.c | 16 | |||
1024.2.g.d | 16 | |||
1024.2.g.e | 16 | |||
1024.2.g.f | 16 | |||
1024.2.g.g | 16 | |||
1024.2.g.h | 16 | |||
1024.2.i | \(\chi_{1024}(65, \cdot)\) | n/a | 224 | 8 |
1024.2.k | \(\chi_{1024}(33, \cdot)\) | n/a | 480 | 16 |
1024.2.m | \(\chi_{1024}(17, \cdot)\) | n/a | 992 | 32 |
1024.2.o | \(\chi_{1024}(9, \cdot)\) | None | 0 | 64 |
1024.2.q | \(\chi_{1024}(5, \cdot)\) | n/a | 16256 | 128 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1024))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(1024)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 11}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(256))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(512))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1024))\)\(^{\oplus 1}\)