Properties

Label 1024.2
Level 1024
Weight 2
Dimension 18192
Nonzero newspaces 8
Sturm bound 131072
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1024 = 2^{10} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(131072\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1024))\).

Total New Old
Modular forms 33600 18672 14928
Cusp forms 31937 18192 13745
Eisenstein series 1663 480 1183

Trace form

\( 18192 q - 128 q^{2} - 96 q^{3} - 128 q^{4} - 128 q^{5} - 128 q^{6} - 96 q^{7} - 128 q^{8} - 160 q^{9} - 128 q^{10} - 96 q^{11} - 128 q^{12} - 128 q^{13} - 128 q^{14} - 96 q^{15} - 128 q^{16} - 192 q^{17}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1024))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1024.2.a \(\chi_{1024}(1, \cdot)\) 1024.2.a.a 2 1
1024.2.a.b 2
1024.2.a.c 2
1024.2.a.d 2
1024.2.a.e 2
1024.2.a.f 2
1024.2.a.g 4
1024.2.a.h 4
1024.2.a.i 4
1024.2.a.j 4
1024.2.b \(\chi_{1024}(513, \cdot)\) 1024.2.b.a 2 1
1024.2.b.b 2
1024.2.b.c 2
1024.2.b.d 2
1024.2.b.e 2
1024.2.b.f 2
1024.2.b.g 8
1024.2.b.h 8
1024.2.e \(\chi_{1024}(257, \cdot)\) 1024.2.e.a 2 2
1024.2.e.b 2
1024.2.e.c 2
1024.2.e.d 2
1024.2.e.e 2
1024.2.e.f 2
1024.2.e.g 4
1024.2.e.h 4
1024.2.e.i 4
1024.2.e.j 4
1024.2.e.k 4
1024.2.e.l 4
1024.2.e.m 4
1024.2.e.n 4
1024.2.e.o 4
1024.2.e.p 8
1024.2.g \(\chi_{1024}(129, \cdot)\) 1024.2.g.a 16 4
1024.2.g.b 16
1024.2.g.c 16
1024.2.g.d 16
1024.2.g.e 16
1024.2.g.f 16
1024.2.g.g 16
1024.2.g.h 16
1024.2.i \(\chi_{1024}(65, \cdot)\) n/a 224 8
1024.2.k \(\chi_{1024}(33, \cdot)\) n/a 480 16
1024.2.m \(\chi_{1024}(17, \cdot)\) n/a 992 32
1024.2.o \(\chi_{1024}(9, \cdot)\) None 0 64
1024.2.q \(\chi_{1024}(5, \cdot)\) n/a 16256 128

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1024))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1024)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 11}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(256))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(512))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1024))\)\(^{\oplus 1}\)