Properties

Label 104.1.h
Level 104104
Weight 11
Character orbit 104.h
Rep. character χ104(51,)\chi_{104}(51,\cdot)
Character field Q\Q
Dimension 22
Newform subspaces 22
Sturm bound 1414
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 104=2313 104 = 2^{3} \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 104.h (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 104 104
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 1414
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M1(104,[χ])M_{1}(104, [\chi]).

Total New Old
Modular forms 4 4 0
Cusp forms 2 2 0
Eisenstein series 2 2 0

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 2 0 0 0

Trace form

2q2q3+2q42q102q122q14+2q162q17+2q26+2q27+2q30+2q352q40+2q422q432q48+2q512q56+4q62+2q64+2q94+O(q100) 2 q - 2 q^{3} + 2 q^{4} - 2 q^{10} - 2 q^{12} - 2 q^{14} + 2 q^{16} - 2 q^{17} + 2 q^{26} + 2 q^{27} + 2 q^{30} + 2 q^{35} - 2 q^{40} + 2 q^{42} - 2 q^{43} - 2 q^{48} + 2 q^{51} - 2 q^{56} + 4 q^{62} + 2 q^{64}+ \cdots - 2 q^{94}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(104,[χ])S_{1}^{\mathrm{new}}(104, [\chi]) into newform subspaces

Label Char Prim Dim AA Field Image CM RM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
104.1.h.a 104.h 104.h 11 0.0520.052 Q\Q D3D_{3} Q(26)\Q(\sqrt{-26}) None 104.1.h.a 1-1 1-1 11 11 qq2q3+q4+q5+q6+q7+q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots
104.1.h.b 104.h 104.h 11 0.0520.052 Q\Q D3D_{3} Q(26)\Q(\sqrt{-26}) None 104.1.h.a 11 1-1 1-1 1-1 q+q2q3+q4q5q6q7+q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots