Properties

Label 104.1.h
Level $104$
Weight $1$
Character orbit 104.h
Rep. character $\chi_{104}(51,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $14$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 104.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(14\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(104, [\chi])\).

Total New Old
Modular forms 4 4 0
Cusp forms 2 2 0
Eisenstein series 2 2 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - 2 q^{3} + 2 q^{4} - 2 q^{10} - 2 q^{12} - 2 q^{14} + 2 q^{16} - 2 q^{17} + 2 q^{26} + 2 q^{27} + 2 q^{30} + 2 q^{35} - 2 q^{40} + 2 q^{42} - 2 q^{43} - 2 q^{48} + 2 q^{51} - 2 q^{56} + 4 q^{62} + 2 q^{64}+ \cdots - 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(104, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
104.1.h.a 104.h 104.h $1$ $0.052$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-26}) \) None 104.1.h.a \(-1\) \(-1\) \(1\) \(1\) \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
104.1.h.b 104.h 104.h $1$ $0.052$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-26}) \) None 104.1.h.a \(1\) \(-1\) \(-1\) \(-1\) \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\)