Properties

Label 104.2.i
Level $104$
Weight $2$
Character orbit 104.i
Rep. character $\chi_{104}(9,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $6$
Newform subspaces $2$
Sturm bound $28$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(28\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(104, [\chi])\).

Total New Old
Modular forms 36 6 30
Cusp forms 20 6 14
Eisenstein series 16 0 16

Trace form

\( 6 q - 2 q^{3} - 2 q^{5} + 2 q^{7} - q^{9} - 2 q^{11} - q^{13} + 8 q^{15} + 7 q^{17} - 6 q^{19} - 20 q^{21} - 6 q^{23} + 4 q^{25} + 4 q^{27} + 7 q^{29} - 16 q^{31} - 10 q^{33} - 8 q^{35} + 3 q^{37} + 6 q^{39}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(104, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
104.2.i.a 104.i 13.c $2$ $0.830$ \(\Q(\sqrt{-3}) \) None 104.2.i.a \(0\) \(-1\) \(4\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+2q^{5}+\zeta_{6}q^{7}+2\zeta_{6}q^{9}+\cdots\)
104.2.i.b 104.i 13.c $4$ $0.830$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 104.2.i.b \(0\) \(-1\) \(-6\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{3}+(-1+\beta _{3})q^{5}+(-\beta _{1}-\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(104, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(104, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)