Properties

Label 104.2.i
Level 104104
Weight 22
Character orbit 104.i
Rep. character χ104(9,)\chi_{104}(9,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 66
Newform subspaces 22
Sturm bound 2828
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 104=2313 104 = 2^{3} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 104.i (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 2 2
Sturm bound: 2828
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(104,[χ])M_{2}(104, [\chi]).

Total New Old
Modular forms 36 6 30
Cusp forms 20 6 14
Eisenstein series 16 0 16

Trace form

6q2q32q5+2q7q92q11q13+8q15+7q176q1920q216q23+4q25+4q27+7q2916q3110q338q35+3q37+6q39++16q99+O(q100) 6 q - 2 q^{3} - 2 q^{5} + 2 q^{7} - q^{9} - 2 q^{11} - q^{13} + 8 q^{15} + 7 q^{17} - 6 q^{19} - 20 q^{21} - 6 q^{23} + 4 q^{25} + 4 q^{27} + 7 q^{29} - 16 q^{31} - 10 q^{33} - 8 q^{35} + 3 q^{37} + 6 q^{39}+ \cdots + 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(104,[χ])S_{2}^{\mathrm{new}}(104, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
104.2.i.a 104.i 13.c 22 0.8300.830 Q(3)\Q(\sqrt{-3}) None 104.2.i.a 00 1-1 44 11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+ζ6)q3+2q5+ζ6q7+2ζ6q9+q+(-1+\zeta_{6})q^{3}+2q^{5}+\zeta_{6}q^{7}+2\zeta_{6}q^{9}+\cdots
104.2.i.b 104.i 13.c 44 0.8300.830 Q(3,17)\Q(\sqrt{-3}, \sqrt{17}) None 104.2.i.b 00 1-1 6-6 11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ1q3+(1+β3)q5+(β1β3)q7+q-\beta _{1}q^{3}+(-1+\beta _{3})q^{5}+(-\beta _{1}-\beta _{3})q^{7}+\cdots

Decomposition of S2old(104,[χ])S_{2}^{\mathrm{old}}(104, [\chi]) into lower level spaces

S2old(104,[χ]) S_{2}^{\mathrm{old}}(104, [\chi]) \simeq S2new(26,[χ])S_{2}^{\mathrm{new}}(26, [\chi])3^{\oplus 3}\oplusS2new(52,[χ])S_{2}^{\mathrm{new}}(52, [\chi])2^{\oplus 2}