Defining parameters
Level: | \( N \) | \(=\) | \( 104 = 2^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 104.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(28\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(104, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 6 | 30 |
Cusp forms | 20 | 6 | 14 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(104, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
104.2.i.a | $2$ | $0.830$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(4\) | \(1\) | \(q+(-1+\zeta_{6})q^{3}+2q^{5}+\zeta_{6}q^{7}+2\zeta_{6}q^{9}+\cdots\) |
104.2.i.b | $4$ | $0.830$ | \(\Q(\sqrt{-3}, \sqrt{17})\) | None | \(0\) | \(-1\) | \(-6\) | \(1\) | \(q-\beta _{1}q^{3}+(-1+\beta _{3})q^{5}+(-\beta _{1}-\beta _{3})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(104, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(104, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)