Properties

Label 1040.6.dx
Level $1040$
Weight $6$
Character orbit 1040.dx
Rep. character $\chi_{1040}(101,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $2240$
Sturm bound $1008$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.dx (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 208 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1008\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(1040, [\chi])\).

Total New Old
Modular forms 3376 2240 1136
Cusp forms 3344 2240 1104
Eisenstein series 32 0 32

Trace form

\( 2240 q + 684 q^{6} + 3144 q^{12} - 2480 q^{14} - 11400 q^{20} + 10056 q^{22} - 24240 q^{24} + 880 q^{26} - 14928 q^{27} - 43212 q^{28} - 55740 q^{32} + 34428 q^{36} + 69640 q^{38} + 30440 q^{42} - 150060 q^{46}+ \cdots - 310932 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(1040, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(1040, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(1040, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 2}\)