Properties

Label 1040.6.er
Level $1040$
Weight $6$
Character orbit 1040.er
Rep. character $\chi_{1040}(367,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $840$
Sturm bound $1008$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.er (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 260 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1008\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(1040, [\chi])\).

Total New Old
Modular forms 3408 840 2568
Cusp forms 3312 840 2472
Eisenstein series 96 0 96

Trace form

\( 840 q + 366 q^{13} - 606 q^{17} - 9348 q^{25} + 28230 q^{37} - 57840 q^{41} - 46170 q^{45} - 120732 q^{53} + 247776 q^{57} - 18900 q^{65} + 15108 q^{73} + 2755620 q^{81} - 260340 q^{85} - 241212 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(1040, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(1040, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(1040, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 3}\)