Properties

Label 105.10.a
Level $105$
Weight $10$
Character orbit 105.a
Rep. character $\chi_{105}(1,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $8$
Sturm bound $160$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(160\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(105))\).

Total New Old
Modular forms 148 36 112
Cusp forms 140 36 104
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(6\)
Plus space\(+\)\(16\)
Minus space\(-\)\(20\)

Trace form

\( 36 q - 68 q^{2} + 8872 q^{4} + 6156 q^{6} + 9604 q^{7} - 67932 q^{8} + 236196 q^{9} - 22500 q^{10} + 156280 q^{11} - 188896 q^{13} - 48020 q^{14} + 202500 q^{15} + 1762184 q^{16} + 1076032 q^{17} - 446148 q^{18}+ \cdots + 1025353080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(105))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 7
105.10.a.a 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.a \(-41\) \(-324\) \(2500\) \(9604\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-10+\beta _{1})q^{2}-3^{4}q^{3}+(120-21\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.b 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.b \(-20\) \(-324\) \(2500\) \(-9604\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-5+\beta _{1})q^{2}-3^{4}q^{3}+(106-8\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.c 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.c \(-17\) \(324\) \(2500\) \(-9604\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-4-\beta _{1})q^{2}+3^{4}q^{3}+(235+9\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.d 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.d \(-13\) \(324\) \(-2500\) \(9604\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{2}+3^{4}q^{3}+(123+8\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.e 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.e \(5\) \(-324\) \(-2500\) \(-9604\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}-3^{4}q^{3}+(237+3\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.f 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.f \(8\) \(324\) \(-2500\) \(-9604\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}+3^{4}q^{3}+(106-\beta _{1}+\beta _{3})q^{4}+\cdots\)
105.10.a.g 105.a 1.a $6$ $54.079$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 105.10.a.g \(-16\) \(-486\) \(-3750\) \(14406\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{2}-3^{4}q^{3}+(428-2\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.h 105.a 1.a $6$ $54.079$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 105.10.a.h \(26\) \(486\) \(3750\) \(14406\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(4+\beta _{1})q^{2}+3^{4}q^{3}+(426+3\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(105))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(105)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)