Properties

Label 105.2.x
Level 105105
Weight 22
Character orbit 105.x
Rep. character χ105(2,)\chi_{105}(2,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 4848
Newform subspaces 11
Sturm bound 3232
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 105=357 105 = 3 \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 105.x (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 105 105
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 1 1
Sturm bound: 3232
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(105,[χ])M_{2}(105, [\chi]).

Total New Old
Modular forms 80 80 0
Cusp forms 48 48 0
Eisenstein series 32 32 0

Trace form

48q2q324q612q78q1010q1216q13+4q158q16+14q1828q218q22+4q25+40q2760q28+40q3024q314q33+8q36+120q97+O(q100) 48 q - 2 q^{3} - 24 q^{6} - 12 q^{7} - 8 q^{10} - 10 q^{12} - 16 q^{13} + 4 q^{15} - 8 q^{16} + 14 q^{18} - 28 q^{21} - 8 q^{22} + 4 q^{25} + 40 q^{27} - 60 q^{28} + 40 q^{30} - 24 q^{31} - 4 q^{33} + 8 q^{36}+ \cdots - 120 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(105,[χ])S_{2}^{\mathrm{new}}(105, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
105.2.x.a 105.x 105.x 4848 0.8380.838 None 105.2.x.a 00 2-2 00 12-12 SU(2)[C12]\mathrm{SU}(2)[C_{12}]