Properties

Label 105.4.a
Level $105$
Weight $4$
Character orbit 105.a
Rep. character $\chi_{105}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $7$
Sturm bound $64$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(64\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(105))\).

Total New Old
Modular forms 52 12 40
Cusp forms 44 12 32
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(2\)
Plus space\(+\)\(8\)
Minus space\(-\)\(4\)

Trace form

\( 12 q - 4 q^{2} + 56 q^{4} + 12 q^{6} - 28 q^{7} + 36 q^{8} + 108 q^{9} + 60 q^{10} - 40 q^{11} - 32 q^{13} + 140 q^{14} - 60 q^{15} + 328 q^{16} - 64 q^{17} - 36 q^{18} - 104 q^{19} + 72 q^{22} + 248 q^{23}+ \cdots - 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(105))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 7
105.4.a.a 105.a 1.a $1$ $6.195$ \(\Q\) None 105.4.a.a \(0\) \(-3\) \(5\) \(7\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-8q^{4}+5q^{5}+7q^{7}+9q^{9}+\cdots\)
105.4.a.b 105.a 1.a $1$ $6.195$ \(\Q\) None 105.4.a.b \(5\) \(-3\) \(5\) \(7\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+5q^{2}-3q^{3}+17q^{4}+5q^{5}-15q^{6}+\cdots\)
105.4.a.c 105.a 1.a $2$ $6.195$ \(\Q(\sqrt{17}) \) None 105.4.a.c \(-7\) \(-6\) \(-10\) \(-14\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta )q^{2}-3q^{3}+(5+7\beta )q^{4}+\cdots\)
105.4.a.d 105.a 1.a $2$ $6.195$ \(\Q(\sqrt{5}) \) None 105.4.a.d \(-4\) \(6\) \(-10\) \(-14\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta )q^{2}+3q^{3}+(1+4\beta )q^{4}+\cdots\)
105.4.a.e 105.a 1.a $2$ $6.195$ \(\Q(\sqrt{2}) \) None 105.4.a.e \(-2\) \(-6\) \(10\) \(-14\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}-3q^{3}+(1-2\beta )q^{4}+\cdots\)
105.4.a.f 105.a 1.a $2$ $6.195$ \(\Q(\sqrt{65}) \) None 105.4.a.f \(1\) \(6\) \(10\) \(-14\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+3q^{3}+(8+\beta )q^{4}+5q^{5}+3\beta q^{6}+\cdots\)
105.4.a.g 105.a 1.a $2$ $6.195$ \(\Q(\sqrt{41}) \) None 105.4.a.g \(3\) \(6\) \(-10\) \(14\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+3q^{3}+(3+3\beta )q^{4}-5q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(105))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(105)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)