Properties

Label 105.4.a
Level 105105
Weight 44
Character orbit 105.a
Rep. character χ105(1,)\chi_{105}(1,\cdot)
Character field Q\Q
Dimension 1212
Newform subspaces 77
Sturm bound 6464
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 105=357 105 = 3 \cdot 5 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 105.a (trivial)
Character field: Q\Q
Newform subspaces: 7 7
Sturm bound: 6464
Trace bound: 22
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(105))M_{4}(\Gamma_0(105)).

Total New Old
Modular forms 52 12 40
Cusp forms 44 12 32
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

335577FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++992277882266110011
++++--550055440044110011
++-++-552233442222110011
++--++772255662244110011
-++++-772255662244110011
-++-++772255662244110011
--++++552233442222110011
----770077660066110011
Plus space++28288820202424881616440044
Minus space-24244420202020441616440044

Trace form

12q4q2+56q4+12q628q7+36q8+108q9+60q1040q1132q13+140q1460q15+328q1664q1736q18104q19+72q22+248q23+360q99+O(q100) 12 q - 4 q^{2} + 56 q^{4} + 12 q^{6} - 28 q^{7} + 36 q^{8} + 108 q^{9} + 60 q^{10} - 40 q^{11} - 32 q^{13} + 140 q^{14} - 60 q^{15} + 328 q^{16} - 64 q^{17} - 36 q^{18} - 104 q^{19} + 72 q^{22} + 248 q^{23}+ \cdots - 360 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(105))S_{4}^{\mathrm{new}}(\Gamma_0(105)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 3 5 7
105.4.a.a 105.a 1.a 11 6.1956.195 Q\Q None 105.4.a.a 00 3-3 55 77 ++ - - SU(2)\mathrm{SU}(2) q3q38q4+5q5+7q7+9q9+q-3q^{3}-8q^{4}+5q^{5}+7q^{7}+9q^{9}+\cdots
105.4.a.b 105.a 1.a 11 6.1956.195 Q\Q None 105.4.a.b 55 3-3 55 77 ++ - - SU(2)\mathrm{SU}(2) q+5q23q3+17q4+5q515q6+q+5q^{2}-3q^{3}+17q^{4}+5q^{5}-15q^{6}+\cdots
105.4.a.c 105.a 1.a 22 6.1956.195 Q(17)\Q(\sqrt{17}) None 105.4.a.c 7-7 6-6 10-10 14-14 ++ ++ ++ SU(2)\mathrm{SU}(2) q+(3β)q23q3+(5+7β)q4+q+(-3-\beta )q^{2}-3q^{3}+(5+7\beta )q^{4}+\cdots
105.4.a.d 105.a 1.a 22 6.1956.195 Q(5)\Q(\sqrt{5}) None 105.4.a.d 4-4 66 10-10 14-14 - ++ ++ SU(2)\mathrm{SU}(2) q+(2β)q2+3q3+(1+4β)q4+q+(-2-\beta )q^{2}+3q^{3}+(1+4\beta )q^{4}+\cdots
105.4.a.e 105.a 1.a 22 6.1956.195 Q(2)\Q(\sqrt{2}) None 105.4.a.e 2-2 6-6 1010 14-14 ++ - ++ SU(2)\mathrm{SU}(2) q+(1+β)q23q3+(12β)q4+q+(-1+\beta )q^{2}-3q^{3}+(1-2\beta )q^{4}+\cdots
105.4.a.f 105.a 1.a 22 6.1956.195 Q(65)\Q(\sqrt{65}) None 105.4.a.f 11 66 1010 14-14 - - ++ SU(2)\mathrm{SU}(2) q+βq2+3q3+(8+β)q4+5q5+3βq6+q+\beta q^{2}+3q^{3}+(8+\beta )q^{4}+5q^{5}+3\beta q^{6}+\cdots
105.4.a.g 105.a 1.a 22 6.1956.195 Q(41)\Q(\sqrt{41}) None 105.4.a.g 33 66 10-10 1414 - ++ - SU(2)\mathrm{SU}(2) q+(1+β)q2+3q3+(3+3β)q45q5+q+(1+\beta )q^{2}+3q^{3}+(3+3\beta )q^{4}-5q^{5}+\cdots

Decomposition of S4old(Γ0(105))S_{4}^{\mathrm{old}}(\Gamma_0(105)) into lower level spaces

S4old(Γ0(105)) S_{4}^{\mathrm{old}}(\Gamma_0(105)) \simeq S4new(Γ0(5))S_{4}^{\mathrm{new}}(\Gamma_0(5))4^{\oplus 4}\oplusS4new(Γ0(7))S_{4}^{\mathrm{new}}(\Gamma_0(7))4^{\oplus 4}\oplusS4new(Γ0(15))S_{4}^{\mathrm{new}}(\Gamma_0(15))2^{\oplus 2}\oplusS4new(Γ0(21))S_{4}^{\mathrm{new}}(\Gamma_0(21))2^{\oplus 2}\oplusS4new(Γ0(35))S_{4}^{\mathrm{new}}(\Gamma_0(35))2^{\oplus 2}