Properties

Label 1064.2.cn
Level $1064$
Weight $2$
Character orbit 1064.cn
Rep. character $\chi_{1064}(837,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $288$
Sturm bound $320$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1064 = 2^{3} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1064.cn (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 56 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(320\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1064, [\chi])\).

Total New Old
Modular forms 328 288 40
Cusp forms 312 288 24
Eisenstein series 16 0 16

Trace form

\( 288 q + 2 q^{2} - 2 q^{4} - 4 q^{8} + 144 q^{9} - 10 q^{12} + 26 q^{14} - 18 q^{16} - 16 q^{20} - 40 q^{22} - 8 q^{23} - 32 q^{24} + 144 q^{25} + 16 q^{26} - 44 q^{28} - 36 q^{30} + 32 q^{32} - 64 q^{34}+ \cdots - 58 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1064, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1064, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1064, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)