Properties

Label 1064.2.dd
Level 10641064
Weight 22
Character orbit 1064.dd
Rep. character χ1064(9,)\chi_{1064}(9,\cdot)
Character field Q(ζ9)\Q(\zeta_{9})
Dimension 240240
Sturm bound 320320

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1064=23719 1064 = 2^{3} \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1064.dd (of order 99 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 133 133
Character field: Q(ζ9)\Q(\zeta_{9})
Sturm bound: 320320

Dimensions

The following table gives the dimensions of various subspaces of M2(1064,[χ])M_{2}(1064, [\chi]).

Total New Old
Modular forms 1008 240 768
Cusp forms 912 240 672
Eisenstein series 96 0 96

Trace form

240q+6q13+12q156q17+6q196q2124q2324q2548q27+12q29+18q35+12q3718q39+18q41+48q436q4936q5312q57+30q99+O(q100) 240 q + 6 q^{13} + 12 q^{15} - 6 q^{17} + 6 q^{19} - 6 q^{21} - 24 q^{23} - 24 q^{25} - 48 q^{27} + 12 q^{29} + 18 q^{35} + 12 q^{37} - 18 q^{39} + 18 q^{41} + 48 q^{43} - 6 q^{49} - 36 q^{53} - 12 q^{57}+ \cdots - 30 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1064,[χ])S_{2}^{\mathrm{new}}(1064, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1064,[χ])S_{2}^{\mathrm{old}}(1064, [\chi]) into lower level spaces

S2old(1064,[χ]) S_{2}^{\mathrm{old}}(1064, [\chi]) \simeq S2new(133,[χ])S_{2}^{\mathrm{new}}(133, [\chi])4^{\oplus 4}\oplusS2new(266,[χ])S_{2}^{\mathrm{new}}(266, [\chi])3^{\oplus 3}\oplusS2new(532,[χ])S_{2}^{\mathrm{new}}(532, [\chi])2^{\oplus 2}