Properties

Label 108.1
Level 108
Weight 1
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 648
Trace bound 0

Downloads

Learn more

Defining parameters

Level: N N = 108=2233 108 = 2^{2} \cdot 3^{3}
Weight: k k = 1 1
Nonzero newspaces: 1 1
Newform subspaces: 1 1
Sturm bound: 648648
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M1(Γ1(108))M_{1}(\Gamma_1(108)).

Total New Old
Modular forms 76 17 59
Cusp forms 1 1 0
Eisenstein series 75 16 59

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 1 0 0 0

Trace form

qq7q13q19+q25+2q31q37+2q43q61q67q73q79+q91q97+O(q100) q - q^{7} - q^{13} - q^{19} + q^{25} + 2 q^{31} - q^{37} + 2 q^{43} - q^{61} - q^{67} - q^{73} - q^{79} + q^{91} - q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(Γ1(108))S_{1}^{\mathrm{new}}(\Gamma_1(108))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
108.1.c χ108(53,)\chi_{108}(53, \cdot) 108.1.c.a 1 1
108.1.d χ108(55,)\chi_{108}(55, \cdot) None 0 1
108.1.f χ108(19,)\chi_{108}(19, \cdot) None 0 2
108.1.g χ108(17,)\chi_{108}(17, \cdot) None 0 2
108.1.j χ108(7,)\chi_{108}(7, \cdot) None 0 6
108.1.k χ108(5,)\chi_{108}(5, \cdot) None 0 6