Defining parameters
Level: | \( N \) | \(=\) | \( 108 = 2^{2} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 108.f (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 36 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(54\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(108, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84 | 28 | 56 |
Cusp forms | 60 | 20 | 40 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(108, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
108.3.f.a | $2$ | $2.943$ | \(\Q(\sqrt{-3}) \) | None | \(-4\) | \(0\) | \(4\) | \(-6\) | \(q-2q^{2}+4q^{4}+(4-4\zeta_{6})q^{5}+(-4+\cdots)q^{7}+\cdots\) |
108.3.f.b | $2$ | $2.943$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(0\) | \(4\) | \(6\) | \(q+(2-2\zeta_{6})q^{2}-4\zeta_{6}q^{4}+(4-4\zeta_{6})q^{5}+\cdots\) |
108.3.f.c | $16$ | $2.943$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(3\) | \(0\) | \(-6\) | \(0\) | \(q+\beta _{1}q^{2}+(-\beta _{2}+\beta _{3})q^{4}+(-\beta _{2}-\beta _{6}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(108, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(108, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)