Properties

Label 108.3.f
Level 108108
Weight 33
Character orbit 108.f
Rep. character χ108(19,)\chi_{108}(19,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 2020
Newform subspaces 33
Sturm bound 5454
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 108=2233 108 = 2^{2} \cdot 3^{3}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 108.f (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 36 36
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 3 3
Sturm bound: 5454
Trace bound: 22
Distinguishing TpT_p: 55, 77

Dimensions

The following table gives the dimensions of various subspaces of M3(108,[χ])M_{3}(108, [\chi]).

Total New Old
Modular forms 84 28 56
Cusp forms 60 20 40
Eisenstein series 24 8 16

Trace form

20q+q2q4+2q5+22q8+4q102q13+24q14q16+32q1752q209q2212q25160q2636q28+26q29119q3211q348q37+1022q98+O(q100) 20 q + q^{2} - q^{4} + 2 q^{5} + 22 q^{8} + 4 q^{10} - 2 q^{13} + 24 q^{14} - q^{16} + 32 q^{17} - 52 q^{20} - 9 q^{22} - 12 q^{25} - 160 q^{26} - 36 q^{28} + 26 q^{29} - 119 q^{32} - 11 q^{34} - 8 q^{37}+ \cdots - 1022 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(108,[χ])S_{3}^{\mathrm{new}}(108, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
108.3.f.a 108.f 36.f 22 2.9432.943 Q(3)\Q(\sqrt{-3}) None 36.3.f.a 4-4 00 44 6-6 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q2q2+4q4+(44ζ6)q5+(4+)q7+q-2q^{2}+4q^{4}+(4-4\zeta_{6})q^{5}+(-4+\cdots)q^{7}+\cdots
108.3.f.b 108.f 36.f 22 2.9432.943 Q(3)\Q(\sqrt{-3}) None 36.3.f.a 22 00 44 66 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(22ζ6)q24ζ6q4+(44ζ6)q5+q+(2-2\zeta_{6})q^{2}-4\zeta_{6}q^{4}+(4-4\zeta_{6})q^{5}+\cdots
108.3.f.c 108.f 36.f 1616 2.9432.943 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 36.3.f.c 33 00 6-6 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+β1q2+(β2+β3)q4+(β2β6+)q5+q+\beta _{1}q^{2}+(-\beta _{2}+\beta _{3})q^{4}+(-\beta _{2}-\beta _{6}+\cdots)q^{5}+\cdots

Decomposition of S3old(108,[χ])S_{3}^{\mathrm{old}}(108, [\chi]) into lower level spaces

S3old(108,[χ]) S_{3}^{\mathrm{old}}(108, [\chi]) \simeq S3new(36,[χ])S_{3}^{\mathrm{new}}(36, [\chi])2^{\oplus 2}