Properties

Label 1083.1
Level 1083
Weight 1
Dimension 70
Nonzero newspaces 5
Newform subspaces 7
Sturm bound 86640
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 7 \)
Sturm bound: \(86640\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(1083))\).

Total New Old
Modular forms 1082 539 543
Cusp forms 74 70 4
Eisenstein series 1008 469 539

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 70 0 0 0

Trace form

\( 70 q + q^{3} + q^{4} + 2 q^{7} + q^{9} - 5 q^{12} - 4 q^{13} + q^{16} - 3 q^{19} - 4 q^{21} + q^{25} - 5 q^{27} - 4 q^{28} + 2 q^{31} + q^{36} + 2 q^{37} - 16 q^{39} - 4 q^{43} + q^{48} - 3 q^{49}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(1083))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1083.1.b \(\chi_{1083}(362, \cdot)\) 1083.1.b.a 1 1
1083.1.b.b 1
1083.1.c \(\chi_{1083}(721, \cdot)\) None 0 1
1083.1.g \(\chi_{1083}(430, \cdot)\) None 0 2
1083.1.h \(\chi_{1083}(68, \cdot)\) 1083.1.h.a 2 2
1083.1.k \(\chi_{1083}(127, \cdot)\) None 0 6
1083.1.l \(\chi_{1083}(62, \cdot)\) 1083.1.l.a 6 6
1083.1.l.b 6
1083.1.o \(\chi_{1083}(37, \cdot)\) None 0 18
1083.1.p \(\chi_{1083}(20, \cdot)\) 1083.1.p.a 18 18
1083.1.r \(\chi_{1083}(11, \cdot)\) 1083.1.r.a 36 36
1083.1.s \(\chi_{1083}(31, \cdot)\) None 0 36
1083.1.v \(\chi_{1083}(5, \cdot)\) None 0 108
1083.1.w \(\chi_{1083}(10, \cdot)\) None 0 108

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(1083))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(1083)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(361))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1083))\)\(^{\oplus 1}\)