Properties

Label 1088.2.r
Level $1088$
Weight $2$
Character orbit 1088.r
Rep. character $\chi_{1088}(305,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $68$
Newform subspaces $1$
Sturm bound $288$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1088 = 2^{6} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1088.r (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 272 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1088, [\chi])\).

Total New Old
Modular forms 304 76 228
Cusp forms 272 68 204
Eisenstein series 32 8 24

Trace form

\( 68 q - 4 q^{13} + 24 q^{15} - 4 q^{17} - 12 q^{19} - 16 q^{21} - 8 q^{33} + 24 q^{35} + 4 q^{43} - 32 q^{47} + 36 q^{49} - 32 q^{51} - 4 q^{53} - 28 q^{59} + 4 q^{67} - 48 q^{69} - 32 q^{77} - 44 q^{81}+ \cdots + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1088, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1088.2.r.a 1088.r 272.r $68$ $8.688$ None 272.2.r.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1088, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1088, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 3}\)