Defining parameters
Level: | \( N \) | \(=\) | \( 1088 = 2^{6} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1088.r (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 272 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1088, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 304 | 76 | 228 |
Cusp forms | 272 | 68 | 204 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1088, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1088.2.r.a | $68$ | $8.688$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1088, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1088, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 3}\)