Defining parameters
Level: | \( N \) | = | \( 1089 = 3^{2} \cdot 11^{2} \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 16 \) | ||
Sturm bound: | \(522720\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(1089))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 219080 | 170219 | 48861 |
Cusp forms | 216520 | 168954 | 47566 |
Eisenstein series | 2560 | 1265 | 1295 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(1089))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(1089))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(1089)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(363))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(1089))\)\(^{\oplus 1}\)