Properties

Label 1089.6
Level 1089
Weight 6
Dimension 168954
Nonzero newspaces 16
Sturm bound 522720
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(522720\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(1089))\).

Total New Old
Modular forms 219080 170219 48861
Cusp forms 216520 168954 47566
Eisenstein series 2560 1265 1295

Trace form

\( 168954 q - 126 q^{2} - 192 q^{3} - 180 q^{4} - 63 q^{5} - 9 q^{6} - 737 q^{7} - 1373 q^{8} - 594 q^{9} + 1629 q^{10} + 295 q^{11} + 2384 q^{12} - 689 q^{13} + 2007 q^{14} - 2232 q^{15} - 17840 q^{16} - 8883 q^{17}+ \cdots + 1520600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(1089))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1089.6.a \(\chi_{1089}(1, \cdot)\) 1089.6.a.a 1 1
1089.6.a.b 1
1089.6.a.c 1
1089.6.a.d 1
1089.6.a.e 1
1089.6.a.f 1
1089.6.a.g 1
1089.6.a.h 1
1089.6.a.i 1
1089.6.a.j 2
1089.6.a.k 2
1089.6.a.l 2
1089.6.a.m 2
1089.6.a.n 2
1089.6.a.o 2
1089.6.a.p 2
1089.6.a.q 3
1089.6.a.r 3
1089.6.a.s 3
1089.6.a.t 4
1089.6.a.u 4
1089.6.a.v 5
1089.6.a.w 5
1089.6.a.x 5
1089.6.a.y 5
1089.6.a.z 6
1089.6.a.ba 6
1089.6.a.bb 8
1089.6.a.bc 8
1089.6.a.bd 8
1089.6.a.be 8
1089.6.a.bf 8
1089.6.a.bg 8
1089.6.a.bh 10
1089.6.a.bi 10
1089.6.a.bj 10
1089.6.a.bk 10
1089.6.a.bl 10
1089.6.a.bm 12
1089.6.a.bn 20
1089.6.a.bo 20
1089.6.d \(\chi_{1089}(1088, \cdot)\) n/a 180 1
1089.6.e \(\chi_{1089}(364, \cdot)\) n/a 1072 2
1089.6.f \(\chi_{1089}(487, \cdot)\) n/a 884 4
1089.6.g \(\chi_{1089}(362, \cdot)\) n/a 1064 2
1089.6.j \(\chi_{1089}(161, \cdot)\) n/a 720 4
1089.6.m \(\chi_{1089}(100, \cdot)\) n/a 2740 10
1089.6.n \(\chi_{1089}(124, \cdot)\) n/a 4256 8
1089.6.o \(\chi_{1089}(98, \cdot)\) n/a 2200 10
1089.6.t \(\chi_{1089}(239, \cdot)\) n/a 4256 8
1089.6.u \(\chi_{1089}(34, \cdot)\) n/a 13160 20
1089.6.v \(\chi_{1089}(37, \cdot)\) n/a 10960 40
1089.6.y \(\chi_{1089}(32, \cdot)\) n/a 13160 20
1089.6.bb \(\chi_{1089}(8, \cdot)\) n/a 8800 40
1089.6.bc \(\chi_{1089}(4, \cdot)\) n/a 52640 80
1089.6.bd \(\chi_{1089}(2, \cdot)\) n/a 52640 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(1089))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(1089)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(363))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(1089))\)\(^{\oplus 1}\)