Properties

Label 10944.2.a.bt
Level 1094410944
Weight 22
Character orbit 10944.a
Self dual yes
Analytic conductor 87.38887.388
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10944,2,Mod(1,10944)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10944, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10944.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 10944=263219 10944 = 2^{6} \cdot 3^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 10944.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.388279972187.3882799721
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q53q7+3q11+6q133q17q19+4q234q2510q292q313q358q37+8q41q43+3q47+2q496q53+3q557q61+2q97+O(q100) q + q^{5} - 3 q^{7} + 3 q^{11} + 6 q^{13} - 3 q^{17} - q^{19} + 4 q^{23} - 4 q^{25} - 10 q^{29} - 2 q^{31} - 3 q^{35} - 8 q^{37} + 8 q^{41} - q^{43} + 3 q^{47} + 2 q^{49} - 6 q^{53} + 3 q^{55} - 7 q^{61}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
1919 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.