Properties

Label 1098.2.a
Level $1098$
Weight $2$
Character orbit 1098.a
Rep. character $\chi_{1098}(1,\cdot)$
Character field $\Q$
Dimension $25$
Newform subspaces $17$
Sturm bound $372$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1098 = 2 \cdot 3^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1098.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(372\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1098))\).

Total New Old
Modular forms 194 25 169
Cusp forms 179 25 154
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(61\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(6\)
Plus space\(+\)\(10\)
Minus space\(-\)\(15\)

Trace form

\( 25 q + q^{2} + 25 q^{4} + 4 q^{5} + 4 q^{7} + q^{8} + 2 q^{10} + 4 q^{11} + 4 q^{13} - 4 q^{14} + 25 q^{16} + 10 q^{17} - 6 q^{19} + 4 q^{20} + 6 q^{22} - 12 q^{23} + 25 q^{25} + 10 q^{26} + 4 q^{28}+ \cdots + 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1098))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 61
1098.2.a.a 1098.a 1.a $1$ $8.768$ \(\Q\) None 366.2.a.f \(-1\) \(0\) \(-1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\)
1098.2.a.b 1098.a 1.a $1$ $8.768$ \(\Q\) None 366.2.a.g \(-1\) \(0\) \(-1\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\)
1098.2.a.c 1098.a 1.a $1$ $8.768$ \(\Q\) None 366.2.a.e \(-1\) \(0\) \(1\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\)
1098.2.a.d 1098.a 1.a $1$ $8.768$ \(\Q\) None 1098.2.a.d \(-1\) \(0\) \(1\) \(4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots\)
1098.2.a.e 1098.a 1.a $1$ $8.768$ \(\Q\) None 366.2.a.d \(-1\) \(0\) \(3\) \(-3\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+3q^{5}-3q^{7}-q^{8}-3q^{10}+\cdots\)
1098.2.a.f 1098.a 1.a $1$ $8.768$ \(\Q\) None 1098.2.a.f \(-1\) \(0\) \(3\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+3q^{5}-q^{8}-3q^{10}+2q^{11}+\cdots\)
1098.2.a.g 1098.a 1.a $1$ $8.768$ \(\Q\) None 1098.2.a.f \(1\) \(0\) \(-3\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-3q^{5}+q^{8}-3q^{10}-2q^{11}+\cdots\)
1098.2.a.h 1098.a 1.a $1$ $8.768$ \(\Q\) None 122.2.a.a \(1\) \(0\) \(-1\) \(-5\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-5q^{7}+q^{8}-q^{10}+\cdots\)
1098.2.a.i 1098.a 1.a $1$ $8.768$ \(\Q\) None 366.2.a.c \(1\) \(0\) \(-1\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-2q^{7}+q^{8}-q^{10}+\cdots\)
1098.2.a.j 1098.a 1.a $1$ $8.768$ \(\Q\) None 1098.2.a.d \(1\) \(0\) \(-1\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+4q^{7}+q^{8}-q^{10}+\cdots\)
1098.2.a.k 1098.a 1.a $1$ $8.768$ \(\Q\) None 366.2.a.a \(1\) \(0\) \(2\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}+4q^{7}+q^{8}+2q^{10}+\cdots\)
1098.2.a.l 1098.a 1.a $1$ $8.768$ \(\Q\) None 366.2.a.b \(1\) \(0\) \(3\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+3q^{5}-q^{7}+q^{8}+3q^{10}+\cdots\)
1098.2.a.m 1098.a 1.a $2$ $8.768$ \(\Q(\sqrt{17}) \) None 366.2.a.h \(2\) \(0\) \(0\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(1-2\beta )q^{5}+(-2+\beta )q^{7}+\cdots\)
1098.2.a.n 1098.a 1.a $2$ $8.768$ \(\Q(\sqrt{13}) \) None 122.2.a.b \(2\) \(0\) \(0\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(2+\beta )q^{7}+q^{8}-2\beta q^{11}+\cdots\)
1098.2.a.o 1098.a 1.a $3$ $8.768$ 3.3.892.1 None 1098.2.a.o \(-3\) \(0\) \(-4\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1-\beta _{1})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\)
1098.2.a.p 1098.a 1.a $3$ $8.768$ 3.3.229.1 None 122.2.a.c \(-3\) \(0\) \(-1\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(\beta _{1}+\beta _{2})q^{5}+(1+2\beta _{1}+\cdots)q^{7}+\cdots\)
1098.2.a.q 1098.a 1.a $3$ $8.768$ 3.3.892.1 None 1098.2.a.o \(3\) \(0\) \(4\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(1+\beta _{1})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1098))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1098)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(61))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(122))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(183))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(366))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(549))\)\(^{\oplus 2}\)