Properties

Label 1098.2.a
Level 10981098
Weight 22
Character orbit 1098.a
Rep. character χ1098(1,)\chi_{1098}(1,\cdot)
Character field Q\Q
Dimension 2525
Newform subspaces 1717
Sturm bound 372372
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1098=23261 1098 = 2 \cdot 3^{2} \cdot 61
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1098.a (trivial)
Character field: Q\Q
Newform subspaces: 17 17
Sturm bound: 372372
Trace bound: 77
Distinguishing TpT_p: 55, 77, 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(1098))M_{2}(\Gamma_0(1098)).

Total New Old
Modular forms 194 25 169
Cusp forms 179 25 154
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22336161FrickeDim
++++++++44
++++--11
++-++-44
++--++33
-++++-44
-++-++11
--++++22
----66
Plus space++1010
Minus space-1515

Trace form

25q+q2+25q4+4q5+4q7+q8+2q10+4q11+4q134q14+25q16+10q176q19+4q20+6q2212q23+25q25+10q26+4q28++17q98+O(q100) 25 q + q^{2} + 25 q^{4} + 4 q^{5} + 4 q^{7} + q^{8} + 2 q^{10} + 4 q^{11} + 4 q^{13} - 4 q^{14} + 25 q^{16} + 10 q^{17} - 6 q^{19} + 4 q^{20} + 6 q^{22} - 12 q^{23} + 25 q^{25} + 10 q^{26} + 4 q^{28}+ \cdots + 17 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(1098))S_{2}^{\mathrm{new}}(\Gamma_0(1098)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 61
1098.2.a.a 1098.a 1.a 11 8.7688.768 Q\Q None 366.2.a.f 1-1 00 1-1 2-2 ++ - - SU(2)\mathrm{SU}(2) qq2+q4q52q7q8+q10+q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots
1098.2.a.b 1098.a 1.a 11 8.7688.768 Q\Q None 366.2.a.g 1-1 00 1-1 11 ++ - - SU(2)\mathrm{SU}(2) qq2+q4q5+q7q8+q10+q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots
1098.2.a.c 1098.a 1.a 11 8.7688.768 Q\Q None 366.2.a.e 1-1 00 11 22 ++ - ++ SU(2)\mathrm{SU}(2) qq2+q4+q5+2q7q8q10+q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots
1098.2.a.d 1098.a 1.a 11 8.7688.768 Q\Q None 1098.2.a.d 1-1 00 11 44 ++ ++ ++ SU(2)\mathrm{SU}(2) qq2+q4+q5+4q7q8q10+q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots
1098.2.a.e 1098.a 1.a 11 8.7688.768 Q\Q None 366.2.a.d 1-1 00 33 3-3 ++ - - SU(2)\mathrm{SU}(2) qq2+q4+3q53q7q83q10+q-q^{2}+q^{4}+3q^{5}-3q^{7}-q^{8}-3q^{10}+\cdots
1098.2.a.f 1098.a 1.a 11 8.7688.768 Q\Q None 1098.2.a.f 1-1 00 33 00 ++ ++ - SU(2)\mathrm{SU}(2) qq2+q4+3q5q83q10+2q11+q-q^{2}+q^{4}+3q^{5}-q^{8}-3q^{10}+2q^{11}+\cdots
1098.2.a.g 1098.a 1.a 11 8.7688.768 Q\Q None 1098.2.a.f 11 00 3-3 00 - ++ - SU(2)\mathrm{SU}(2) q+q2+q43q5+q83q102q11+q+q^{2}+q^{4}-3q^{5}+q^{8}-3q^{10}-2q^{11}+\cdots
1098.2.a.h 1098.a 1.a 11 8.7688.768 Q\Q None 122.2.a.a 11 00 1-1 5-5 - - ++ SU(2)\mathrm{SU}(2) q+q2+q4q55q7+q8q10+q+q^{2}+q^{4}-q^{5}-5q^{7}+q^{8}-q^{10}+\cdots
1098.2.a.i 1098.a 1.a 11 8.7688.768 Q\Q None 366.2.a.c 11 00 1-1 2-2 - - ++ SU(2)\mathrm{SU}(2) q+q2+q4q52q7+q8q10+q+q^{2}+q^{4}-q^{5}-2q^{7}+q^{8}-q^{10}+\cdots
1098.2.a.j 1098.a 1.a 11 8.7688.768 Q\Q None 1098.2.a.d 11 00 1-1 44 - ++ ++ SU(2)\mathrm{SU}(2) q+q2+q4q5+4q7+q8q10+q+q^{2}+q^{4}-q^{5}+4q^{7}+q^{8}-q^{10}+\cdots
1098.2.a.k 1098.a 1.a 11 8.7688.768 Q\Q None 366.2.a.a 11 00 22 44 - - - SU(2)\mathrm{SU}(2) q+q2+q4+2q5+4q7+q8+2q10+q+q^{2}+q^{4}+2q^{5}+4q^{7}+q^{8}+2q^{10}+\cdots
1098.2.a.l 1098.a 1.a 11 8.7688.768 Q\Q None 366.2.a.b 11 00 33 1-1 - - - SU(2)\mathrm{SU}(2) q+q2+q4+3q5q7+q8+3q10+q+q^{2}+q^{4}+3q^{5}-q^{7}+q^{8}+3q^{10}+\cdots
1098.2.a.m 1098.a 1.a 22 8.7688.768 Q(17)\Q(\sqrt{17}) None 366.2.a.h 22 00 00 3-3 - - - SU(2)\mathrm{SU}(2) q+q2+q4+(12β)q5+(2+β)q7+q+q^{2}+q^{4}+(1-2\beta )q^{5}+(-2+\beta )q^{7}+\cdots
1098.2.a.n 1098.a 1.a 22 8.7688.768 Q(13)\Q(\sqrt{13}) None 122.2.a.b 22 00 00 55 - - - SU(2)\mathrm{SU}(2) q+q2+q4+(2+β)q7+q82βq11+q+q^{2}+q^{4}+(2+\beta )q^{7}+q^{8}-2\beta q^{11}+\cdots
1098.2.a.o 1098.a 1.a 33 8.7688.768 3.3.892.1 None 1098.2.a.o 3-3 00 4-4 2-2 ++ ++ ++ SU(2)\mathrm{SU}(2) qq2+q4+(1β1)q5+(1+β1+)q7+q-q^{2}+q^{4}+(-1-\beta _{1})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots
1098.2.a.p 1098.a 1.a 33 8.7688.768 3.3.229.1 None 122.2.a.c 3-3 00 1-1 44 ++ - ++ SU(2)\mathrm{SU}(2) qq2+q4+(β1+β2)q5+(1+2β1+)q7+q-q^{2}+q^{4}+(\beta _{1}+\beta _{2})q^{5}+(1+2\beta _{1}+\cdots)q^{7}+\cdots
1098.2.a.q 1098.a 1.a 33 8.7688.768 3.3.892.1 None 1098.2.a.o 33 00 44 2-2 - ++ ++ SU(2)\mathrm{SU}(2) q+q2+q4+(1+β1)q5+(1+β1+)q7+q+q^{2}+q^{4}+(1+\beta _{1})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots

Decomposition of S2old(Γ0(1098))S_{2}^{\mathrm{old}}(\Gamma_0(1098)) into lower level spaces

S2old(Γ0(1098)) S_{2}^{\mathrm{old}}(\Gamma_0(1098)) \simeq S2new(Γ0(61))S_{2}^{\mathrm{new}}(\Gamma_0(61))6^{\oplus 6}\oplusS2new(Γ0(122))S_{2}^{\mathrm{new}}(\Gamma_0(122))3^{\oplus 3}\oplusS2new(Γ0(183))S_{2}^{\mathrm{new}}(\Gamma_0(183))4^{\oplus 4}\oplusS2new(Γ0(366))S_{2}^{\mathrm{new}}(\Gamma_0(366))2^{\oplus 2}\oplusS2new(Γ0(549))S_{2}^{\mathrm{new}}(\Gamma_0(549))2^{\oplus 2}