Properties

Label 11.12.a
Level $11$
Weight $12$
Character orbit 11.a
Rep. character $\chi_{11}(1,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $2$
Sturm bound $12$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 11.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(11))\).

Total New Old
Modular forms 12 8 4
Cusp forms 10 8 2
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)Dim
\(+\)\(5\)
\(-\)\(3\)

Trace form

\( 8 q + 32 q^{2} - 233 q^{3} + 9076 q^{4} - 15703 q^{5} + 10942 q^{6} + 73958 q^{7} - 56676 q^{8} + 307703 q^{9} + 449510 q^{10} - 322102 q^{11} + 1431584 q^{12} + 1964714 q^{13} + 1988732 q^{14} - 2772689 q^{15}+ \cdots - 113395848049 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(11))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11
11.12.a.a 11.a 1.a $3$ $8.452$ 3.3.202533.1 None 11.12.a.a \(0\) \(-393\) \(-7305\) \(-5082\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-131-2\beta _{1}-4\beta _{2})q^{3}+\cdots\)
11.12.a.b 11.a 1.a $5$ $8.452$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 11.12.a.b \(32\) \(160\) \(-8398\) \(79040\) $+$ $\mathrm{SU}(2)$ \(q+(6+\beta _{1})q^{2}+(2^{5}-\beta _{3})q^{3}+(1239+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(11))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(11)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)