Defining parameters
Level: | \( N \) | \(=\) | \( 11 \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 11.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(12\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(11))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 8 | 4 |
Cusp forms | 10 | 8 | 2 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(11\) | Dim |
---|---|
\(+\) | \(5\) |
\(-\) | \(3\) |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(11))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 11 | |||||||
11.12.a.a | $3$ | $8.452$ | 3.3.202533.1 | None | \(0\) | \(-393\) | \(-7305\) | \(-5082\) | $-$ | \(q-\beta _{1}q^{2}+(-131-2\beta _{1}-4\beta _{2})q^{3}+\cdots\) | |
11.12.a.b | $5$ | $8.452$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(32\) | \(160\) | \(-8398\) | \(79040\) | $+$ | \(q+(6+\beta _{1})q^{2}+(2^{5}-\beta _{3})q^{3}+(1239+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(11))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_0(11)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)