Properties

Label 11.37
Level 11
Weight 37
Dimension 175
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 370
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 11 \)
Weight: \( k \) = \( 37 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(370\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{37}(\Gamma_1(11))\).

Total New Old
Modular forms 185 185 0
Cusp forms 175 175 0
Eisenstein series 10 10 0

Trace form

\( 175 q - 5 q^{2} - 5 q^{3} - 5 q^{4} - 5 q^{5} - 59374855782405 q^{6} - 10\!\cdots\!05 q^{7} - 29\!\cdots\!05 q^{8} + 12\!\cdots\!15 q^{9} - 62\!\cdots\!05 q^{11} - 14\!\cdots\!10 q^{12} + 44\!\cdots\!95 q^{13}+ \cdots - 23\!\cdots\!85 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{37}^{\mathrm{new}}(\Gamma_1(11))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
11.37.b \(\chi_{11}(10, \cdot)\) 11.37.b.a 1 1
11.37.b.b 34
11.37.d \(\chi_{11}(2, \cdot)\) 11.37.d.a 140 4