Properties

Label 11.5
Level 11
Weight 5
Dimension 15
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 50
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 11 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(50\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(11))\).

Total New Old
Modular forms 25 25 0
Cusp forms 15 15 0
Eisenstein series 10 10 0

Trace form

\( 15 q - 5 q^{2} - 5 q^{3} - 5 q^{4} - 5 q^{5} + 75 q^{6} - 80 q^{7} - 245 q^{8} - 175 q^{9} + 100 q^{11} + 790 q^{12} + 250 q^{13} + 1210 q^{14} + 605 q^{15} - 945 q^{16} - 1250 q^{17} - 3150 q^{18} - 1025 q^{19}+ \cdots - 8725 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(11))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
11.5.b \(\chi_{11}(10, \cdot)\) 11.5.b.a 1 1
11.5.b.b 2
11.5.d \(\chi_{11}(2, \cdot)\) 11.5.d.a 12 4