Defining parameters
Level: | \( N \) | = | \( 11 \) |
Weight: | \( k \) | = | \( 5 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(50\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(11))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 25 | 25 | 0 |
Cusp forms | 15 | 15 | 0 |
Eisenstein series | 10 | 10 | 0 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(11))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
11.5.b | \(\chi_{11}(10, \cdot)\) | 11.5.b.a | 1 | 1 |
11.5.b.b | 2 | |||
11.5.d | \(\chi_{11}(2, \cdot)\) | 11.5.d.a | 12 | 4 |