Properties

Label 11.55.b
Level $11$
Weight $55$
Character orbit 11.b
Rep. character $\chi_{11}(10,\cdot)$
Character field $\Q$
Dimension $53$
Newform subspaces $2$
Sturm bound $55$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 55 \)
Character orbit: \([\chi]\) \(=\) 11.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(55\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{55}(11, [\chi])\).

Total New Old
Modular forms 55 55 0
Cusp forms 53 53 0
Eisenstein series 2 2 0

Trace form

\( 53 q - 10935593393726 q^{3} - 44\!\cdots\!96 q^{4} + 66\!\cdots\!94 q^{5} + 96\!\cdots\!19 q^{9} - 22\!\cdots\!15 q^{11} + 58\!\cdots\!36 q^{12} + 16\!\cdots\!92 q^{14} - 70\!\cdots\!60 q^{15} + 27\!\cdots\!60 q^{16}+ \cdots - 19\!\cdots\!89 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{55}^{\mathrm{new}}(11, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
11.55.b.a 11.b 11.b $1$ $203.147$ \(\Q\) \(\Q(\sqrt{-11}) \) 11.55.b.a \(0\) \(15\!\cdots\!90\) \(63\!\cdots\!74\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+15166324313290q^{3}+2^{54}q^{4}+\cdots\)
11.55.b.b 11.b 11.b $52$ $203.147$ None 11.55.b.b \(0\) \(-26\!\cdots\!16\) \(35\!\cdots\!20\) \(0\) $\mathrm{SU}(2)[C_{2}]$