Defining parameters
Level: | \( N \) | \(=\) | \( 11 \) |
Weight: | \( k \) | \(=\) | \( 55 \) |
Character orbit: | \([\chi]\) | \(=\) | 11.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(55\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{55}(11, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 55 | 55 | 0 |
Cusp forms | 53 | 53 | 0 |
Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{55}^{\mathrm{new}}(11, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
11.55.b.a | $1$ | $203.147$ | \(\Q\) | \(\Q(\sqrt{-11}) \) | \(0\) | \(15\!\cdots\!90\) | \(63\!\cdots\!74\) | \(0\) | \(q+15166324313290q^{3}+2^{54}q^{4}+\cdots\) |
11.55.b.b | $52$ | $203.147$ | None | \(0\) | \(-26\!\cdots\!16\) | \(35\!\cdots\!20\) | \(0\) |