Defining parameters
Level: | \( N \) | \(=\) | \( 110 = 2 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 110.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(110))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 58 | 10 | 48 |
Cusp forms | 50 | 10 | 40 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(2\) |
Plus space | \(+\) | \(8\) | ||
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(110))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(110))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(110)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 2}\)