Properties

Label 1100.6.b
Level 11001100
Weight 66
Character orbit 1100.b
Rep. character χ1100(749,)\chi_{1100}(749,\cdot)
Character field Q\Q
Dimension 7474
Newform subspaces 99
Sturm bound 10801080
Trace bound 1111

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1100=225211 1100 = 2^{2} \cdot 5^{2} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 1100.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Newform subspaces: 9 9
Sturm bound: 10801080
Trace bound: 1111
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M6(1100,[χ])M_{6}(1100, [\chi]).

Total New Old
Modular forms 918 74 844
Cusp forms 882 74 808
Eisenstein series 36 0 36

Trace form

74q4972q9242q111220q19608q21+21004q2910854q31+25196q39+64908q41186366q49+92716q51122934q5940560q61248638q69+235342q71++173756q99+O(q100) 74 q - 4972 q^{9} - 242 q^{11} - 1220 q^{19} - 608 q^{21} + 21004 q^{29} - 10854 q^{31} + 25196 q^{39} + 64908 q^{41} - 186366 q^{49} + 92716 q^{51} - 122934 q^{59} - 40560 q^{61} - 248638 q^{69} + 235342 q^{71}+ \cdots + 173756 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(1100,[χ])S_{6}^{\mathrm{new}}(1100, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1100.6.b.a 1100.b 5.b 22 176.422176.422 Q(1)\Q(\sqrt{-1}) None 44.6.a.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+7iq3+50iq7+194q9+121q11+q+7 i q^{3}+50 i q^{7}+194 q^{9}+121 q^{11}+\cdots
1100.6.b.b 1100.b 5.b 44 176.422176.422 Q(i,1761)\Q(i, \sqrt{1761}) None 220.6.a.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β15β2)q3+(5β1+34β2)q7+q+(-\beta _{1}-5\beta _{2})q^{3}+(5\beta _{1}+34\beta _{2})q^{7}+\cdots
1100.6.b.c 1100.b 5.b 44 176.422176.422 Q(i,31)\Q(i, \sqrt{31}) None 44.6.a.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(3β1+β3)q3+(134β1+3β3)q7+q+(-3\beta _{1}+\beta _{3})q^{3}+(-134\beta _{1}+3\beta _{3})q^{7}+\cdots
1100.6.b.d 1100.b 5.b 66 176.422176.422 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 220.6.a.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β4q3+(24β3+7β4+2β5)q7+q+\beta _{4}q^{3}+(-24\beta _{3}+7\beta _{4}+2\beta _{5})q^{7}+\cdots
1100.6.b.e 1100.b 5.b 88 176.422176.422 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 220.6.a.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β3q3+(6β2+β4)q7+(58+)q9+q+\beta _{3}q^{3}+(-6\beta _{2}+\beta _{4})q^{7}+(-58+\cdots)q^{9}+\cdots
1100.6.b.f 1100.b 5.b 88 176.422176.422 Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots) None 220.6.a.d 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q3+(3β1β2β4)q7+(58+)q9+q+\beta _{1}q^{3}+(3\beta _{1}-\beta _{2}-\beta _{4})q^{7}+(-58+\cdots)q^{9}+\cdots
1100.6.b.g 1100.b 5.b 1010 176.422176.422 Q[x]/(x10+)\mathbb{Q}[x]/(x^{10} + \cdots) None 220.6.a.e 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β5q3+(β5+2β6+β8)q7+(94+)q9+q+\beta _{5}q^{3}+(-\beta _{5}+2\beta _{6}+\beta _{8})q^{7}+(-94+\cdots)q^{9}+\cdots
1100.6.b.h 1100.b 5.b 1616 176.422176.422 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 1100.6.a.i 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β8q3+(2β8+4β9β10)q7+q+\beta _{8}q^{3}+(-2\beta _{8}+4\beta _{9}-\beta _{10})q^{7}+\cdots
1100.6.b.i 1100.b 5.b 1616 176.422176.422 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 1100.6.a.h 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β8+β9)q3+(2β9+β10)q7+q+(\beta _{8}+\beta _{9})q^{3}+(-2\beta _{9}+\beta _{10})q^{7}+\cdots

Decomposition of S6old(1100,[χ])S_{6}^{\mathrm{old}}(1100, [\chi]) into lower level spaces