Properties

Label 1100.6.bz
Level $1100$
Weight $6$
Character orbit 1100.bz
Rep. character $\chi_{1100}(9,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $600$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.bz (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 275 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(1100, [\chi])\).

Total New Old
Modular forms 3624 600 3024
Cusp forms 3576 600 2976
Eisenstein series 48 0 48

Trace form

\( 600 q + 5 q^{3} - 4 q^{5} - 190 q^{7} + 12057 q^{9} + 158 q^{11} - 1131 q^{15} - 4956 q^{19} + 3528 q^{21} - 3190 q^{23} - 1658 q^{25} + 3590 q^{27} - 10092 q^{29} - 9973 q^{31} + 24775 q^{33} - 12973 q^{35}+ \cdots + 182006 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(1100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(1100, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(1100, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(550, [\chi])\)\(^{\oplus 2}\)