Defining parameters
Level: | \( N \) | \(=\) | \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 1100.bz (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 275 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Sturm bound: | \(1080\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(1100, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3624 | 600 | 3024 |
Cusp forms | 3576 | 600 | 2976 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(1100, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{6}^{\mathrm{old}}(1100, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(1100, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(550, [\chi])\)\(^{\oplus 2}\)