Properties

Label 111.1
Level 111
Weight 1
Dimension 7
Nonzero newspaces 3
Newform subspaces 4
Sturm bound 912
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 111 = 3 \cdot 37 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 4 \)
Sturm bound: \(912\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(111))\).

Total New Old
Modular forms 79 41 38
Cusp forms 7 7 0
Eisenstein series 72 34 38

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 7 0 0 0

Trace form

\( 7 q - 3 q^{3} + q^{4} - 2 q^{7} + q^{9} - 4 q^{10} - 3 q^{12} - 2 q^{13} - 3 q^{16} - 2 q^{19} - 2 q^{21} + q^{25} + 3 q^{27} + 4 q^{28} + 4 q^{30} - 2 q^{31} + 4 q^{34} + q^{36} + 3 q^{37} + 4 q^{39}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(111))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
111.1.b \(\chi_{111}(38, \cdot)\) None 0 1
111.1.d \(\chi_{111}(110, \cdot)\) 111.1.d.a 1 1
111.1.d.b 2
111.1.f \(\chi_{111}(31, \cdot)\) None 0 2
111.1.h \(\chi_{111}(11, \cdot)\) 111.1.h.a 2 2
111.1.i \(\chi_{111}(26, \cdot)\) 111.1.i.a 2 2
111.1.l \(\chi_{111}(82, \cdot)\) None 0 4
111.1.n \(\chi_{111}(41, \cdot)\) None 0 6
111.1.p \(\chi_{111}(44, \cdot)\) None 0 6
111.1.r \(\chi_{111}(13, \cdot)\) None 0 12