Properties

Label 1110.2.i
Level 11101110
Weight 22
Character orbit 1110.i
Rep. character χ1110(121,)\chi_{1110}(121,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 5656
Newform subspaces 1616
Sturm bound 456456
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1110=23537 1110 = 2 \cdot 3 \cdot 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1110.i (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 37 37
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 16 16
Sturm bound: 456456
Trace bound: 77
Distinguishing TpT_p: 77, 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(1110,[χ])M_{2}(1110, [\chi]).

Total New Old
Modular forms 472 56 416
Cusp forms 440 56 384
Eisenstein series 32 0 32

Trace form

56q4q328q4+4q728q9+8q108q114q12+4q13+16q1428q1616q17+4q19+4q2116q2328q258q26+8q27+4q28++4q99+O(q100) 56 q - 4 q^{3} - 28 q^{4} + 4 q^{7} - 28 q^{9} + 8 q^{10} - 8 q^{11} - 4 q^{12} + 4 q^{13} + 16 q^{14} - 28 q^{16} - 16 q^{17} + 4 q^{19} + 4 q^{21} - 16 q^{23} - 28 q^{25} - 8 q^{26} + 8 q^{27} + 4 q^{28}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1110,[χ])S_{2}^{\mathrm{new}}(1110, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1110.2.i.a 1110.i 37.c 22 8.8638.863 Q(3)\Q(\sqrt{-3}) None 1110.2.i.a 1-1 1-1 11 44 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+ζ6)q2ζ6q3ζ6q4+ζ6q5+q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots
1110.2.i.b 1110.i 37.c 22 8.8638.863 Q(3)\Q(\sqrt{-3}) None 1110.2.i.b 1-1 11 1-1 3-3 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+ζ6)q2+ζ6q3ζ6q4ζ6q5+q+(-1+\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots
1110.2.i.c 1110.i 37.c 22 8.8638.863 Q(3)\Q(\sqrt{-3}) None 1110.2.i.c 11 1-1 1-1 2-2 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2ζ6q3ζ6q4ζ6q5+q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots
1110.2.i.d 1110.i 37.c 22 8.8638.863 Q(3)\Q(\sqrt{-3}) None 1110.2.i.d 11 1-1 11 11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2ζ6q3ζ6q4+ζ6q5+q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots
1110.2.i.e 1110.i 37.c 22 8.8638.863 Q(3)\Q(\sqrt{-3}) None 1110.2.i.e 11 11 1-1 33 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2+ζ6q3ζ6q4ζ6q5+q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots
1110.2.i.f 1110.i 37.c 22 8.8638.863 Q(3)\Q(\sqrt{-3}) None 1110.2.i.f 11 11 11 2-2 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2+ζ6q3ζ6q4+ζ6q5+q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots
1110.2.i.g 1110.i 37.c 22 8.8638.863 Q(3)\Q(\sqrt{-3}) None 1110.2.i.g 11 11 11 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2+ζ6q3ζ6q4+ζ6q5+q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots
1110.2.i.h 1110.i 37.c 22 8.8638.863 Q(3)\Q(\sqrt{-3}) None 1110.2.i.h 11 11 11 55 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2+ζ6q3ζ6q4+ζ6q5+q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots
1110.2.i.i 1110.i 37.c 44 8.8638.863 Q(3,145)\Q(\sqrt{-3}, \sqrt{145}) None 1110.2.i.i 2-2 2-2 22 2-2 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+β2)q2β2q3β2q4+β2q5+q+(-1+\beta _{2})q^{2}-\beta _{2}q^{3}-\beta _{2}q^{4}+\beta _{2}q^{5}+\cdots
1110.2.i.j 1110.i 37.c 44 8.8638.863 Q(3,73)\Q(\sqrt{-3}, \sqrt{73}) None 1110.2.i.j 2-2 22 2-2 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ2q2+(1β2)q3+(1+β2)q4+q-\beta _{2}q^{2}+(1-\beta _{2})q^{3}+(-1+\beta _{2})q^{4}+\cdots
1110.2.i.k 1110.i 37.c 44 8.8638.863 Q(3,41)\Q(\sqrt{-3}, \sqrt{41}) None 1110.2.i.k 22 2-2 2-2 66 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β2)q2β2q3β2q4β2q5+q+(1-\beta _{2})q^{2}-\beta _{2}q^{3}-\beta _{2}q^{4}-\beta _{2}q^{5}+\cdots
1110.2.i.l 1110.i 37.c 44 8.8638.863 Q(3,5)\Q(\sqrt{-3}, \sqrt{-5}) None 1110.2.i.l 22 2-2 22 2-2 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β1)q2β1q3β1q4+β1q5+q+(1-\beta _{1})q^{2}-\beta _{1}q^{3}-\beta _{1}q^{4}+\beta _{1}q^{5}+\cdots
1110.2.i.m 1110.i 37.c 44 8.8638.863 Q(3,11)\Q(\sqrt{-3}, \sqrt{-11}) None 1110.2.i.m 22 2-2 22 1-1 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β1)q2β1q3β1q4+β1q5+q+(1-\beta _{1})q^{2}-\beta _{1}q^{3}-\beta _{1}q^{4}+\beta _{1}q^{5}+\cdots
1110.2.i.n 1110.i 37.c 44 8.8638.863 Q(ζ12)\Q(\zeta_{12}) None 1110.2.i.n 22 22 2-2 2-2 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β1+1)q2+β1q3β1q4+q+(-\beta_1+1)q^{2}+\beta_1 q^{3}-\beta_1 q^{4}+\cdots
1110.2.i.o 1110.i 37.c 66 8.8638.863 6.0.45911232.1 None 1110.2.i.o 3-3 33 33 1-1 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ4q2+(1β4)q3+(1+β4)q4+q-\beta _{4}q^{2}+(1-\beta _{4})q^{3}+(-1+\beta _{4})q^{4}+\cdots
1110.2.i.p 1110.i 37.c 1010 8.8638.863 Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots) None 1110.2.i.p 5-5 5-5 5-5 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β6)q2+β6q3+β6q4+β6q5+q+(-1-\beta _{6})q^{2}+\beta _{6}q^{3}+\beta _{6}q^{4}+\beta _{6}q^{5}+\cdots

Decomposition of S2old(1110,[χ])S_{2}^{\mathrm{old}}(1110, [\chi]) into lower level spaces