Properties

Label 1110.2.i
Level $1110$
Weight $2$
Character orbit 1110.i
Rep. character $\chi_{1110}(121,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $56$
Newform subspaces $16$
Sturm bound $456$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 16 \)
Sturm bound: \(456\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1110, [\chi])\).

Total New Old
Modular forms 472 56 416
Cusp forms 440 56 384
Eisenstein series 32 0 32

Trace form

\( 56 q - 4 q^{3} - 28 q^{4} + 4 q^{7} - 28 q^{9} + 8 q^{10} - 8 q^{11} - 4 q^{12} + 4 q^{13} + 16 q^{14} - 28 q^{16} - 16 q^{17} + 4 q^{19} + 4 q^{21} - 16 q^{23} - 28 q^{25} - 8 q^{26} + 8 q^{27} + 4 q^{28}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1110, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1110.2.i.a 1110.i 37.c $2$ $8.863$ \(\Q(\sqrt{-3}) \) None 1110.2.i.a \(-1\) \(-1\) \(1\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots\)
1110.2.i.b 1110.i 37.c $2$ $8.863$ \(\Q(\sqrt{-3}) \) None 1110.2.i.b \(-1\) \(1\) \(-1\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots\)
1110.2.i.c 1110.i 37.c $2$ $8.863$ \(\Q(\sqrt{-3}) \) None 1110.2.i.c \(1\) \(-1\) \(-1\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots\)
1110.2.i.d 1110.i 37.c $2$ $8.863$ \(\Q(\sqrt{-3}) \) None 1110.2.i.d \(1\) \(-1\) \(1\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots\)
1110.2.i.e 1110.i 37.c $2$ $8.863$ \(\Q(\sqrt{-3}) \) None 1110.2.i.e \(1\) \(1\) \(-1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+\cdots\)
1110.2.i.f 1110.i 37.c $2$ $8.863$ \(\Q(\sqrt{-3}) \) None 1110.2.i.f \(1\) \(1\) \(1\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots\)
1110.2.i.g 1110.i 37.c $2$ $8.863$ \(\Q(\sqrt{-3}) \) None 1110.2.i.g \(1\) \(1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots\)
1110.2.i.h 1110.i 37.c $2$ $8.863$ \(\Q(\sqrt{-3}) \) None 1110.2.i.h \(1\) \(1\) \(1\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+\cdots\)
1110.2.i.i 1110.i 37.c $4$ $8.863$ \(\Q(\sqrt{-3}, \sqrt{145})\) None 1110.2.i.i \(-2\) \(-2\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{2})q^{2}-\beta _{2}q^{3}-\beta _{2}q^{4}+\beta _{2}q^{5}+\cdots\)
1110.2.i.j 1110.i 37.c $4$ $8.863$ \(\Q(\sqrt{-3}, \sqrt{73})\) None 1110.2.i.j \(-2\) \(2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(1-\beta _{2})q^{3}+(-1+\beta _{2})q^{4}+\cdots\)
1110.2.i.k 1110.i 37.c $4$ $8.863$ \(\Q(\sqrt{-3}, \sqrt{41})\) None 1110.2.i.k \(2\) \(-2\) \(-2\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{2})q^{2}-\beta _{2}q^{3}-\beta _{2}q^{4}-\beta _{2}q^{5}+\cdots\)
1110.2.i.l 1110.i 37.c $4$ $8.863$ \(\Q(\sqrt{-3}, \sqrt{-5})\) None 1110.2.i.l \(2\) \(-2\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1})q^{2}-\beta _{1}q^{3}-\beta _{1}q^{4}+\beta _{1}q^{5}+\cdots\)
1110.2.i.m 1110.i 37.c $4$ $8.863$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 1110.2.i.m \(2\) \(-2\) \(2\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1})q^{2}-\beta _{1}q^{3}-\beta _{1}q^{4}+\beta _{1}q^{5}+\cdots\)
1110.2.i.n 1110.i 37.c $4$ $8.863$ \(\Q(\zeta_{12})\) None 1110.2.i.n \(2\) \(2\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_1+1)q^{2}+\beta_1 q^{3}-\beta_1 q^{4}+\cdots\)
1110.2.i.o 1110.i 37.c $6$ $8.863$ 6.0.45911232.1 None 1110.2.i.o \(-3\) \(3\) \(3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{4}q^{2}+(1-\beta _{4})q^{3}+(-1+\beta _{4})q^{4}+\cdots\)
1110.2.i.p 1110.i 37.c $10$ $8.863$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1110.2.i.p \(-5\) \(-5\) \(-5\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{6})q^{2}+\beta _{6}q^{3}+\beta _{6}q^{4}+\beta _{6}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1110, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1110, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(370, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(555, [\chi])\)\(^{\oplus 2}\)