Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M2(Γ0(1116)).
|
Total |
New |
Old |
Modular forms
| 204 |
12 |
192 |
Cusp forms
| 181 |
12 |
169 |
Eisenstein series
| 23 |
0 |
23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 3 | 31 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | + | | 20 | 0 | 20 | | 17 | 0 | 17 | | 3 | 0 | 3 |
+ | + | − | − | | 32 | 0 | 32 | | 28 | 0 | 28 | | 4 | 0 | 4 |
+ | − | + | − | | 32 | 0 | 32 | | 28 | 0 | 28 | | 4 | 0 | 4 |
+ | − | − | + | | 20 | 0 | 20 | | 16 | 0 | 16 | | 4 | 0 | 4 |
− | + | + | − | | 22 | 2 | 20 | | 20 | 2 | 18 | | 2 | 0 | 2 |
− | + | − | + | | 28 | 2 | 26 | | 26 | 2 | 24 | | 2 | 0 | 2 |
− | − | + | + | | 28 | 4 | 24 | | 26 | 4 | 22 | | 2 | 0 | 2 |
− | − | − | − | | 22 | 4 | 18 | | 20 | 4 | 16 | | 2 | 0 | 2 |
Plus space | + | | 96 | 6 | 90 | | 85 | 6 | 79 | | 11 | 0 | 11 |
Minus space | − | | 108 | 6 | 102 | | 96 | 6 | 90 | | 12 | 0 | 12 |
Decomposition of S2new(Γ0(1116)) into newform subspaces
Decomposition of S2old(Γ0(1116)) into lower level spaces