Properties

Label 112.2.m
Level 112112
Weight 22
Character orbit 112.m
Rep. character χ112(29,)\chi_{112}(29,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 2424
Newform subspaces 44
Sturm bound 3232
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 112=247 112 = 2^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 112.m (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 16 16
Character field: Q(i)\Q(i)
Newform subspaces: 4 4
Sturm bound: 3232
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(112,[χ])M_{2}(112, [\chi]).

Total New Old
Modular forms 36 24 12
Cusp forms 28 24 4
Eisenstein series 8 0 8

Trace form

24q2q412q6+8q104q11+4q122q1416q15+2q16+10q1816q1928q20+18q2224q2412q26+24q278q2924q30+12q34++44q99+O(q100) 24 q - 2 q^{4} - 12 q^{6} + 8 q^{10} - 4 q^{11} + 4 q^{12} - 2 q^{14} - 16 q^{15} + 2 q^{16} + 10 q^{18} - 16 q^{19} - 28 q^{20} + 18 q^{22} - 24 q^{24} - 12 q^{26} + 24 q^{27} - 8 q^{29} - 24 q^{30} + 12 q^{34}+ \cdots + 44 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(112,[χ])S_{2}^{\mathrm{new}}(112, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
112.2.m.a 112.m 16.e 22 0.8940.894 Q(1)\Q(\sqrt{-1}) None 112.2.m.a 2-2 4-4 4-4 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i1)q2+(2i2)q32iq4+q+(i-1)q^{2}+(2 i-2)q^{3}-2 i q^{4}+\cdots
112.2.m.b 112.m 16.e 22 0.8940.894 Q(1)\Q(\sqrt{-1}) None 112.2.m.b 2-2 00 44 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i1)q22iq4+(2i+2)q5+q+(i-1)q^{2}-2 i q^{4}+(2 i+2)q^{5}+\cdots
112.2.m.c 112.m 16.e 88 0.8940.894 8.0.214798336.3 None 112.2.m.c 22 00 4-4 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ3q2+(β1β4)q3+(1+β4+)q4+q-\beta _{3}q^{2}+(-\beta _{1}-\beta _{4})q^{3}+(1+\beta _{4}+\cdots)q^{4}+\cdots
112.2.m.d 112.m 16.e 1212 0.8940.894 12.0.\cdots.1 None 112.2.m.d 22 44 44 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β2q2+(β2+β10)q3+β1q4+q+\beta _{2}q^{2}+(-\beta _{2}+\beta _{10})q^{3}+\beta _{1}q^{4}+\cdots

Decomposition of S2old(112,[χ])S_{2}^{\mathrm{old}}(112, [\chi]) into lower level spaces

S2old(112,[χ]) S_{2}^{\mathrm{old}}(112, [\chi]) \simeq S2new(16,[χ])S_{2}^{\mathrm{new}}(16, [\chi])2^{\oplus 2}