Defining parameters
Level: | \( N \) | \(=\) | \( 112 = 2^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 112.m (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(112, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 24 | 12 |
Cusp forms | 28 | 24 | 4 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(112, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
112.2.m.a | $2$ | $0.894$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(-4\) | \(-4\) | \(0\) | \(q+(i-1)q^{2}+(2 i-2)q^{3}-2 i q^{4}+\cdots\) |
112.2.m.b | $2$ | $0.894$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(4\) | \(0\) | \(q+(i-1)q^{2}-2 i q^{4}+(2 i+2)q^{5}+\cdots\) |
112.2.m.c | $8$ | $0.894$ | 8.0.214798336.3 | None | \(2\) | \(0\) | \(-4\) | \(0\) | \(q-\beta _{3}q^{2}+(-\beta _{1}-\beta _{4})q^{3}+(1+\beta _{4}+\cdots)q^{4}+\cdots\) |
112.2.m.d | $12$ | $0.894$ | 12.0.\(\cdots\).1 | None | \(2\) | \(4\) | \(4\) | \(0\) | \(q+\beta _{2}q^{2}+(-\beta _{2}+\beta _{10})q^{3}+\beta _{1}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(112, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(112, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)