Properties

Label 112.2.m
Level $112$
Weight $2$
Character orbit 112.m
Rep. character $\chi_{112}(29,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $24$
Newform subspaces $4$
Sturm bound $32$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 112.m (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(32\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(112, [\chi])\).

Total New Old
Modular forms 36 24 12
Cusp forms 28 24 4
Eisenstein series 8 0 8

Trace form

\( 24 q - 2 q^{4} - 12 q^{6} + 8 q^{10} - 4 q^{11} + 4 q^{12} - 2 q^{14} - 16 q^{15} + 2 q^{16} + 10 q^{18} - 16 q^{19} - 28 q^{20} + 18 q^{22} - 24 q^{24} - 12 q^{26} + 24 q^{27} - 8 q^{29} - 24 q^{30} + 12 q^{34}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(112, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
112.2.m.a 112.m 16.e $2$ $0.894$ \(\Q(\sqrt{-1}) \) None 112.2.m.a \(-2\) \(-4\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{2}+(2 i-2)q^{3}-2 i q^{4}+\cdots\)
112.2.m.b 112.m 16.e $2$ $0.894$ \(\Q(\sqrt{-1}) \) None 112.2.m.b \(-2\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{2}-2 i q^{4}+(2 i+2)q^{5}+\cdots\)
112.2.m.c 112.m 16.e $8$ $0.894$ 8.0.214798336.3 None 112.2.m.c \(2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{2}+(-\beta _{1}-\beta _{4})q^{3}+(1+\beta _{4}+\cdots)q^{4}+\cdots\)
112.2.m.d 112.m 16.e $12$ $0.894$ 12.0.\(\cdots\).1 None 112.2.m.d \(2\) \(4\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}+(-\beta _{2}+\beta _{10})q^{3}+\beta _{1}q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(112, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(112, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)