Defining parameters
Level: | \( N \) | \(=\) | \( 112 = 2^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 112.w (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 112 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(112, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 72 | 0 |
Cusp forms | 56 | 56 | 0 |
Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(112, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
112.2.w.a | $4$ | $0.894$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(-4\) | \(-6\) | \(0\) | \(q+(\zeta_{12}-\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(-1-\zeta_{12}+\cdots)q^{3}+\cdots\) |
112.2.w.b | $4$ | $0.894$ | \(\Q(\zeta_{12})\) | None | \(4\) | \(2\) | \(0\) | \(0\) | \(q+(1+\zeta_{12}^{3})q^{2}+(1-\zeta_{12}^{2}+\zeta_{12}^{3})q^{3}+\cdots\) |
112.2.w.c | $48$ | $0.894$ | None | \(-4\) | \(0\) | \(4\) | \(0\) |