Properties

Label 112.4.i
Level $112$
Weight $4$
Character orbit 112.i
Rep. character $\chi_{112}(65,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $22$
Newform subspaces $6$
Sturm bound $64$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 6 \)
Sturm bound: \(64\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(112, [\chi])\).

Total New Old
Modular forms 108 26 82
Cusp forms 84 22 62
Eisenstein series 24 4 20

Trace form

\( 22 q - 5 q^{3} - q^{5} + 20 q^{7} - 82 q^{9} - 9 q^{11} - 4 q^{13} - 50 q^{15} - q^{17} - 203 q^{19} + 93 q^{21} - 39 q^{23} - 260 q^{25} + 382 q^{27} + 140 q^{29} + 307 q^{31} + 65 q^{33} - 357 q^{35}+ \cdots - 5636 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(112, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
112.4.i.a 112.i 7.c $2$ $6.608$ \(\Q(\sqrt{-3}) \) None 14.4.c.a \(0\) \(-5\) \(9\) \(28\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-5+5\zeta_{6})q^{3}+9\zeta_{6}q^{5}+(21-14\zeta_{6})q^{7}+\cdots\)
112.4.i.b 112.i 7.c $2$ $6.608$ \(\Q(\sqrt{-3}) \) None 14.4.c.b \(0\) \(-1\) \(-7\) \(20\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-7\zeta_{6}q^{5}+(1+18\zeta_{6})q^{7}+\cdots\)
112.4.i.c 112.i 7.c $2$ $6.608$ \(\Q(\sqrt{-3}) \) None 7.4.c.a \(0\) \(7\) \(-7\) \(-28\) $\mathrm{SU}(2)[C_{3}]$ \(q+(7-7\zeta_{6})q^{3}-7\zeta_{6}q^{5}+(-7-14\zeta_{6})q^{7}+\cdots\)
112.4.i.d 112.i 7.c $4$ $6.608$ \(\Q(\sqrt{-3}, \sqrt{37})\) None 28.4.e.a \(0\) \(0\) \(14\) \(-24\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{3}+(7-7\beta _{1}+2\beta _{2}+2\beta _{3})q^{5}+\cdots\)
112.4.i.e 112.i 7.c $6$ $6.608$ 6.0.11163123.4 None 56.4.i.b \(0\) \(-7\) \(3\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2\beta _{1}+\beta _{5})q^{3}+(1-\beta _{1}-\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots\)
112.4.i.f 112.i 7.c $6$ $6.608$ 6.0.11163123.4 None 56.4.i.a \(0\) \(1\) \(-13\) \(20\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{3}+(-5+5\beta _{1}-\beta _{3}-\beta _{4}-2\beta _{5})q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(112, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(112, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)