Defining parameters
Level: | \( N \) | \(=\) | \( 112 = 2^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 112.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(112, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 108 | 26 | 82 |
Cusp forms | 84 | 22 | 62 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(112, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
112.4.i.a | $2$ | $6.608$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-5\) | \(9\) | \(28\) | \(q+(-5+5\zeta_{6})q^{3}+9\zeta_{6}q^{5}+(21-14\zeta_{6})q^{7}+\cdots\) |
112.4.i.b | $2$ | $6.608$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(-7\) | \(20\) | \(q+(-1+\zeta_{6})q^{3}-7\zeta_{6}q^{5}+(1+18\zeta_{6})q^{7}+\cdots\) |
112.4.i.c | $2$ | $6.608$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(7\) | \(-7\) | \(-28\) | \(q+(7-7\zeta_{6})q^{3}-7\zeta_{6}q^{5}+(-7-14\zeta_{6})q^{7}+\cdots\) |
112.4.i.d | $4$ | $6.608$ | \(\Q(\sqrt{-3}, \sqrt{37})\) | None | \(0\) | \(0\) | \(14\) | \(-24\) | \(q-\beta _{2}q^{3}+(7-7\beta _{1}+2\beta _{2}+2\beta _{3})q^{5}+\cdots\) |
112.4.i.e | $6$ | $6.608$ | 6.0.11163123.4 | None | \(0\) | \(-7\) | \(3\) | \(4\) | \(q+(-2\beta _{1}+\beta _{5})q^{3}+(1-\beta _{1}-\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots\) |
112.4.i.f | $6$ | $6.608$ | 6.0.11163123.4 | None | \(0\) | \(1\) | \(-13\) | \(20\) | \(q-\beta _{3}q^{3}+(-5+5\beta _{1}-\beta _{3}-\beta _{4}-2\beta _{5})q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(112, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(112, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)