Defining parameters
Level: | \( N \) | \(=\) | \( 112 = 2^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 112.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 112 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(112, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 100 | 100 | 0 |
Cusp forms | 92 | 92 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(112, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
112.4.j.a | $4$ | $6.608$ | \(\Q(i, \sqrt{7})\) | \(\Q(\sqrt{-7}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{1}-3\beta _{3})q^{2}+(-2-5\beta _{2})q^{4}+(-14\beta _{1}+\cdots)q^{7}+\cdots\) |
112.4.j.b | $88$ | $6.608$ | None | \(-4\) | \(0\) | \(0\) | \(-4\) |