Properties

Label 1127.2.c.c.1126.10
Level $1127$
Weight $2$
Character 1127.1126
Analytic conductor $8.999$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,2,Mod(1126,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1127.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.99914030780\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 161)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1126.10
Character \(\chi\) \(=\) 1127.1126
Dual form 1127.2.c.c.1126.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.584306 q^{2} +0.589587i q^{3} -1.65859 q^{4} +3.53325 q^{5} -0.344500i q^{6} +2.13773 q^{8} +2.65239 q^{9} -2.06450 q^{10} -0.280969i q^{11} -0.977882i q^{12} -6.20533i q^{13} +2.08316i q^{15} +2.06808 q^{16} +3.79570 q^{17} -1.54981 q^{18} -3.85425 q^{19} -5.86020 q^{20} +0.164172i q^{22} +(-2.06808 - 4.32701i) q^{23} +1.26038i q^{24} +7.48386 q^{25} +3.62581i q^{26} +3.33258i q^{27} -2.64066 q^{29} -1.21720i q^{30} -5.30430i q^{31} -5.48386 q^{32} +0.165656 q^{33} -2.21785 q^{34} -4.39921 q^{36} -0.745680i q^{37} +2.25206 q^{38} +3.65859 q^{39} +7.55315 q^{40} +4.20999i q^{41} -7.90283i q^{43} +0.466011i q^{44} +9.37155 q^{45} +(1.20839 + 2.52830i) q^{46} +6.24816i q^{47} +1.21931i q^{48} -4.37287 q^{50} +2.23790i q^{51} +10.2921i q^{52} +1.32805i q^{53} -1.94725i q^{54} -0.992733i q^{55} -2.27242i q^{57} +1.54295 q^{58} +3.59592i q^{59} -3.45510i q^{60} +10.3536 q^{61} +3.09934i q^{62} -0.931905 q^{64} -21.9250i q^{65} -0.0967936 q^{66} -11.1972i q^{67} -6.29550 q^{68} +(2.55115 - 1.21931i) q^{69} +5.77682 q^{71} +5.67010 q^{72} +7.45389i q^{73} +0.435706i q^{74} +4.41239i q^{75} +6.39260 q^{76} -2.13773 q^{78} -7.14772i q^{79} +7.30705 q^{80} +5.99231 q^{81} -2.45992i q^{82} -10.3906 q^{83} +13.4112 q^{85} +4.61768i q^{86} -1.55690i q^{87} -0.600637i q^{88} +5.58545 q^{89} -5.47585 q^{90} +(3.43009 + 7.17672i) q^{92} +3.12735 q^{93} -3.65084i q^{94} -13.6180 q^{95} -3.23322i q^{96} +10.9371 q^{97} -0.745238i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 8 q^{2} + 24 q^{4} + 12 q^{8} - 8 q^{9} - 44 q^{18} + 44 q^{25} - 44 q^{29} + 12 q^{32} + 32 q^{39} - 36 q^{46} + 84 q^{50} - 28 q^{58} - 68 q^{64} + 16 q^{71} + 8 q^{72} - 12 q^{78} - 44 q^{81}+ \cdots - 112 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1127\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.584306 −0.413167 −0.206583 0.978429i \(-0.566234\pi\)
−0.206583 + 0.978429i \(0.566234\pi\)
\(3\) 0.589587i 0.340399i 0.985410 + 0.170199i \(0.0544411\pi\)
−0.985410 + 0.170199i \(0.945559\pi\)
\(4\) −1.65859 −0.829293
\(5\) 3.53325 1.58012 0.790059 0.613031i \(-0.210050\pi\)
0.790059 + 0.613031i \(0.210050\pi\)
\(6\) 0.344500i 0.140641i
\(7\) 0 0
\(8\) 2.13773 0.755803
\(9\) 2.65239 0.884129
\(10\) −2.06450 −0.652852
\(11\) 0.280969i 0.0847153i −0.999103 0.0423576i \(-0.986513\pi\)
0.999103 0.0423576i \(-0.0134869\pi\)
\(12\) 0.977882i 0.282290i
\(13\) 6.20533i 1.72105i −0.509409 0.860525i \(-0.670136\pi\)
0.509409 0.860525i \(-0.329864\pi\)
\(14\) 0 0
\(15\) 2.08316i 0.537870i
\(16\) 2.06808 0.517020
\(17\) 3.79570 0.920593 0.460296 0.887765i \(-0.347743\pi\)
0.460296 + 0.887765i \(0.347743\pi\)
\(18\) −1.54981 −0.365293
\(19\) −3.85425 −0.884225 −0.442113 0.896960i \(-0.645771\pi\)
−0.442113 + 0.896960i \(0.645771\pi\)
\(20\) −5.86020 −1.31038
\(21\) 0 0
\(22\) 0.164172i 0.0350015i
\(23\) −2.06808 4.32701i −0.431225 0.902245i
\(24\) 1.26038i 0.257274i
\(25\) 7.48386 1.49677
\(26\) 3.62581i 0.711081i
\(27\) 3.33258i 0.641355i
\(28\) 0 0
\(29\) −2.64066 −0.490358 −0.245179 0.969478i \(-0.578847\pi\)
−0.245179 + 0.969478i \(0.578847\pi\)
\(30\) 1.21720i 0.222230i
\(31\) 5.30430i 0.952681i −0.879261 0.476340i \(-0.841963\pi\)
0.879261 0.476340i \(-0.158037\pi\)
\(32\) −5.48386 −0.969419
\(33\) 0.165656 0.0288369
\(34\) −2.21785 −0.380358
\(35\) 0 0
\(36\) −4.39921 −0.733202
\(37\) 0.745680i 0.122589i −0.998120 0.0612945i \(-0.980477\pi\)
0.998120 0.0612945i \(-0.0195229\pi\)
\(38\) 2.25206 0.365333
\(39\) 3.65859 0.585843
\(40\) 7.55315 1.19426
\(41\) 4.20999i 0.657490i 0.944419 + 0.328745i \(0.106626\pi\)
−0.944419 + 0.328745i \(0.893374\pi\)
\(42\) 0 0
\(43\) 7.90283i 1.20517i −0.798054 0.602585i \(-0.794137\pi\)
0.798054 0.602585i \(-0.205863\pi\)
\(44\) 0.466011i 0.0702538i
\(45\) 9.37155 1.39703
\(46\) 1.20839 + 2.52830i 0.178168 + 0.372778i
\(47\) 6.24816i 0.911388i 0.890137 + 0.455694i \(0.150609\pi\)
−0.890137 + 0.455694i \(0.849391\pi\)
\(48\) 1.21931i 0.175993i
\(49\) 0 0
\(50\) −4.37287 −0.618417
\(51\) 2.23790i 0.313368i
\(52\) 10.2921i 1.42725i
\(53\) 1.32805i 0.182421i 0.995832 + 0.0912105i \(0.0290736\pi\)
−0.995832 + 0.0912105i \(0.970926\pi\)
\(54\) 1.94725i 0.264987i
\(55\) 0.992733i 0.133860i
\(56\) 0 0
\(57\) 2.27242i 0.300989i
\(58\) 1.54295 0.202600
\(59\) 3.59592i 0.468149i 0.972219 + 0.234075i \(0.0752060\pi\)
−0.972219 + 0.234075i \(0.924794\pi\)
\(60\) 3.45510i 0.446052i
\(61\) 10.3536 1.32565 0.662824 0.748775i \(-0.269358\pi\)
0.662824 + 0.748775i \(0.269358\pi\)
\(62\) 3.09934i 0.393616i
\(63\) 0 0
\(64\) −0.931905 −0.116488
\(65\) 21.9250i 2.71946i
\(66\) −0.0967936 −0.0119145
\(67\) 11.1972i 1.36796i −0.729500 0.683980i \(-0.760247\pi\)
0.729500 0.683980i \(-0.239753\pi\)
\(68\) −6.29550 −0.763441
\(69\) 2.55115 1.21931i 0.307123 0.146788i
\(70\) 0 0
\(71\) 5.77682 0.685582 0.342791 0.939412i \(-0.388628\pi\)
0.342791 + 0.939412i \(0.388628\pi\)
\(72\) 5.67010 0.668228
\(73\) 7.45389i 0.872412i 0.899847 + 0.436206i \(0.143678\pi\)
−0.899847 + 0.436206i \(0.856322\pi\)
\(74\) 0.435706i 0.0506497i
\(75\) 4.41239i 0.509499i
\(76\) 6.39260 0.733282
\(77\) 0 0
\(78\) −2.13773 −0.242051
\(79\) 7.14772i 0.804181i −0.915600 0.402091i \(-0.868284\pi\)
0.915600 0.402091i \(-0.131716\pi\)
\(80\) 7.30705 0.816953
\(81\) 5.99231 0.665813
\(82\) 2.45992i 0.271653i
\(83\) −10.3906 −1.14052 −0.570258 0.821465i \(-0.693157\pi\)
−0.570258 + 0.821465i \(0.693157\pi\)
\(84\) 0 0
\(85\) 13.4112 1.45464
\(86\) 4.61768i 0.497937i
\(87\) 1.55690i 0.166917i
\(88\) 0.600637i 0.0640281i
\(89\) 5.58545 0.592056 0.296028 0.955179i \(-0.404338\pi\)
0.296028 + 0.955179i \(0.404338\pi\)
\(90\) −5.47585 −0.577206
\(91\) 0 0
\(92\) 3.43009 + 7.17672i 0.357612 + 0.748225i
\(93\) 3.12735 0.324291
\(94\) 3.65084i 0.376555i
\(95\) −13.6180 −1.39718
\(96\) 3.23322i 0.329989i
\(97\) 10.9371 1.11049 0.555247 0.831686i \(-0.312624\pi\)
0.555247 + 0.831686i \(0.312624\pi\)
\(98\) 0 0
\(99\) 0.745238i 0.0748992i
\(100\) −12.4126 −1.24126
\(101\) 7.32332i 0.728697i 0.931263 + 0.364349i \(0.118708\pi\)
−0.931263 + 0.364349i \(0.881292\pi\)
\(102\) 1.30762i 0.129473i
\(103\) 9.31856 0.918185 0.459093 0.888388i \(-0.348175\pi\)
0.459093 + 0.888388i \(0.348175\pi\)
\(104\) 13.2654i 1.30078i
\(105\) 0 0
\(106\) 0.775985i 0.0753704i
\(107\) 7.05049i 0.681597i 0.940136 + 0.340798i \(0.110697\pi\)
−0.940136 + 0.340798i \(0.889303\pi\)
\(108\) 5.52737i 0.531871i
\(109\) 15.5344i 1.48792i 0.668221 + 0.743962i \(0.267056\pi\)
−0.668221 + 0.743962i \(0.732944\pi\)
\(110\) 0.580060i 0.0553066i
\(111\) 0.439644 0.0417291
\(112\) 0 0
\(113\) 2.81523i 0.264834i −0.991194 0.132417i \(-0.957726\pi\)
0.991194 0.132417i \(-0.0422738\pi\)
\(114\) 1.32779i 0.124359i
\(115\) −7.30705 15.2884i −0.681386 1.42565i
\(116\) 4.37976 0.406650
\(117\) 16.4589i 1.52163i
\(118\) 2.10112i 0.193424i
\(119\) 0 0
\(120\) 4.45325i 0.406524i
\(121\) 10.9211 0.992823
\(122\) −6.04970 −0.547714
\(123\) −2.48216 −0.223809
\(124\) 8.79764i 0.790051i
\(125\) 8.77611 0.784959
\(126\) 0 0
\(127\) 6.58438 0.584269 0.292135 0.956377i \(-0.405634\pi\)
0.292135 + 0.956377i \(0.405634\pi\)
\(128\) 11.5122 1.01755
\(129\) 4.65941 0.410238
\(130\) 12.8109i 1.12359i
\(131\) 7.90581i 0.690734i 0.938468 + 0.345367i \(0.112246\pi\)
−0.938468 + 0.345367i \(0.887754\pi\)
\(132\) −0.274754 −0.0239143
\(133\) 0 0
\(134\) 6.54262i 0.565196i
\(135\) 11.7748i 1.01342i
\(136\) 8.11420 0.695787
\(137\) 21.1490i 1.80688i −0.428713 0.903441i \(-0.641033\pi\)
0.428713 0.903441i \(-0.358967\pi\)
\(138\) −1.49065 + 0.712453i −0.126893 + 0.0606480i
\(139\) 0.0766084i 0.00649784i −0.999995 0.00324892i \(-0.998966\pi\)
0.999995 0.00324892i \(-0.00103416\pi\)
\(140\) 0 0
\(141\) −3.68384 −0.310235
\(142\) −3.37543 −0.283260
\(143\) −1.74350 −0.145799
\(144\) 5.48535 0.457112
\(145\) −9.33010 −0.774823
\(146\) 4.35536i 0.360452i
\(147\) 0 0
\(148\) 1.23677i 0.101662i
\(149\) 22.3423i 1.83036i 0.403051 + 0.915178i \(0.367950\pi\)
−0.403051 + 0.915178i \(0.632050\pi\)
\(150\) 2.57819i 0.210508i
\(151\) −14.8965 −1.21226 −0.606130 0.795366i \(-0.707279\pi\)
−0.606130 + 0.795366i \(0.707279\pi\)
\(152\) −8.23936 −0.668300
\(153\) 10.0677 0.813922
\(154\) 0 0
\(155\) 18.7414i 1.50535i
\(156\) −6.06808 −0.485835
\(157\) −18.8796 −1.50676 −0.753378 0.657587i \(-0.771577\pi\)
−0.753378 + 0.657587i \(0.771577\pi\)
\(158\) 4.17646i 0.332261i
\(159\) −0.782999 −0.0620959
\(160\) −19.3759 −1.53180
\(161\) 0 0
\(162\) −3.50135 −0.275092
\(163\) 0.919318 0.0720066 0.0360033 0.999352i \(-0.488537\pi\)
0.0360033 + 0.999352i \(0.488537\pi\)
\(164\) 6.98263i 0.545252i
\(165\) 0.585303 0.0455658
\(166\) 6.07129 0.471224
\(167\) 24.9470i 1.93045i 0.261413 + 0.965227i \(0.415811\pi\)
−0.261413 + 0.965227i \(0.584189\pi\)
\(168\) 0 0
\(169\) −25.5061 −1.96201
\(170\) −7.83623 −0.601011
\(171\) −10.2230 −0.781769
\(172\) 13.1075i 0.999440i
\(173\) 15.6615i 1.19072i 0.803457 + 0.595362i \(0.202992\pi\)
−0.803457 + 0.595362i \(0.797008\pi\)
\(174\) 0.909705i 0.0689646i
\(175\) 0 0
\(176\) 0.581066i 0.0437995i
\(177\) −2.12011 −0.159357
\(178\) −3.26361 −0.244618
\(179\) 3.10337 0.231957 0.115978 0.993252i \(-0.463000\pi\)
0.115978 + 0.993252i \(0.463000\pi\)
\(180\) −15.5435 −1.15855
\(181\) −2.83745 −0.210906 −0.105453 0.994424i \(-0.533629\pi\)
−0.105453 + 0.994424i \(0.533629\pi\)
\(182\) 0 0
\(183\) 6.10438i 0.451249i
\(184\) −4.42101 9.25001i −0.325921 0.681920i
\(185\) 2.63467i 0.193705i
\(186\) −1.82733 −0.133986
\(187\) 1.06647i 0.0779882i
\(188\) 10.3631i 0.755807i
\(189\) 0 0
\(190\) 7.95710 0.577268
\(191\) 22.0554i 1.59587i −0.602741 0.797937i \(-0.705925\pi\)
0.602741 0.797937i \(-0.294075\pi\)
\(192\) 0.549440i 0.0396524i
\(193\) 13.6199 0.980382 0.490191 0.871615i \(-0.336927\pi\)
0.490191 + 0.871615i \(0.336927\pi\)
\(194\) −6.39061 −0.458819
\(195\) 12.9267 0.925700
\(196\) 0 0
\(197\) 2.26953 0.161697 0.0808486 0.996726i \(-0.474237\pi\)
0.0808486 + 0.996726i \(0.474237\pi\)
\(198\) 0.435447i 0.0309459i
\(199\) −12.0736 −0.855876 −0.427938 0.903808i \(-0.640760\pi\)
−0.427938 + 0.903808i \(0.640760\pi\)
\(200\) 15.9985 1.13127
\(201\) 6.60175 0.465652
\(202\) 4.27906i 0.301074i
\(203\) 0 0
\(204\) 3.71175i 0.259874i
\(205\) 14.8749i 1.03891i
\(206\) −5.44490 −0.379364
\(207\) −5.48535 11.4769i −0.381258 0.797701i
\(208\) 12.8331i 0.889817i
\(209\) 1.08292i 0.0749074i
\(210\) 0 0
\(211\) −15.0034 −1.03287 −0.516437 0.856325i \(-0.672742\pi\)
−0.516437 + 0.856325i \(0.672742\pi\)
\(212\) 2.20268i 0.151281i
\(213\) 3.40594i 0.233371i
\(214\) 4.11965i 0.281613i
\(215\) 27.9227i 1.90431i
\(216\) 7.12417i 0.484738i
\(217\) 0 0
\(218\) 9.07684i 0.614761i
\(219\) −4.39472 −0.296968
\(220\) 1.64653i 0.111009i
\(221\) 23.5536i 1.58439i
\(222\) −0.256887 −0.0172411
\(223\) 13.7114i 0.918184i 0.888389 + 0.459092i \(0.151825\pi\)
−0.888389 + 0.459092i \(0.848175\pi\)
\(224\) 0 0
\(225\) 19.8501 1.32334
\(226\) 1.64495i 0.109421i
\(227\) 15.0410 0.998305 0.499153 0.866514i \(-0.333645\pi\)
0.499153 + 0.866514i \(0.333645\pi\)
\(228\) 3.76900i 0.249608i
\(229\) −15.6285 −1.03276 −0.516379 0.856360i \(-0.672720\pi\)
−0.516379 + 0.856360i \(0.672720\pi\)
\(230\) 4.26955 + 8.93312i 0.281526 + 0.589033i
\(231\) 0 0
\(232\) −5.64502 −0.370614
\(233\) −22.4064 −1.46789 −0.733946 0.679208i \(-0.762323\pi\)
−0.733946 + 0.679208i \(0.762323\pi\)
\(234\) 9.61706i 0.628687i
\(235\) 22.0763i 1.44010i
\(236\) 5.96415i 0.388233i
\(237\) 4.21421 0.273742
\(238\) 0 0
\(239\) 6.47497 0.418831 0.209416 0.977827i \(-0.432844\pi\)
0.209416 + 0.977827i \(0.432844\pi\)
\(240\) 4.30814i 0.278089i
\(241\) 0.579409 0.0373230 0.0186615 0.999826i \(-0.494060\pi\)
0.0186615 + 0.999826i \(0.494060\pi\)
\(242\) −6.38124 −0.410202
\(243\) 13.5307i 0.867996i
\(244\) −17.1724 −1.09935
\(245\) 0 0
\(246\) 1.45034 0.0924703
\(247\) 23.9169i 1.52179i
\(248\) 11.3392i 0.720039i
\(249\) 6.12617i 0.388230i
\(250\) −5.12794 −0.324319
\(251\) 2.46315 0.155473 0.0777364 0.996974i \(-0.475231\pi\)
0.0777364 + 0.996974i \(0.475231\pi\)
\(252\) 0 0
\(253\) −1.21576 + 0.581066i −0.0764339 + 0.0365313i
\(254\) −3.84729 −0.241401
\(255\) 7.90705i 0.495159i
\(256\) −4.86287 −0.303929
\(257\) 19.7863i 1.23424i −0.786870 0.617119i \(-0.788300\pi\)
0.786870 0.617119i \(-0.211700\pi\)
\(258\) −2.72252 −0.169497
\(259\) 0 0
\(260\) 36.3645i 2.25523i
\(261\) −7.00404 −0.433539
\(262\) 4.61942i 0.285389i
\(263\) 22.8976i 1.41192i 0.708250 + 0.705962i \(0.249485\pi\)
−0.708250 + 0.705962i \(0.750515\pi\)
\(264\) 0.354128 0.0217951
\(265\) 4.69232i 0.288247i
\(266\) 0 0
\(267\) 3.29311i 0.201535i
\(268\) 18.5716i 1.13444i
\(269\) 15.8009i 0.963396i 0.876337 + 0.481698i \(0.159980\pi\)
−0.876337 + 0.481698i \(0.840020\pi\)
\(270\) 6.88011i 0.418710i
\(271\) 14.4967i 0.880609i 0.897848 + 0.440305i \(0.145130\pi\)
−0.897848 + 0.440305i \(0.854870\pi\)
\(272\) 7.84981 0.475965
\(273\) 0 0
\(274\) 12.3575i 0.746544i
\(275\) 2.10273i 0.126799i
\(276\) −4.23131 + 2.02234i −0.254695 + 0.121730i
\(277\) −23.3337 −1.40199 −0.700993 0.713168i \(-0.747259\pi\)
−0.700993 + 0.713168i \(0.747259\pi\)
\(278\) 0.0447628i 0.00268469i
\(279\) 14.0691i 0.842292i
\(280\) 0 0
\(281\) 16.7022i 0.996371i −0.867070 0.498185i \(-0.834000\pi\)
0.867070 0.498185i \(-0.166000\pi\)
\(282\) 2.15249 0.128179
\(283\) −12.2103 −0.725828 −0.362914 0.931823i \(-0.618218\pi\)
−0.362914 + 0.931823i \(0.618218\pi\)
\(284\) −9.58135 −0.568548
\(285\) 8.02902i 0.475598i
\(286\) 1.01874 0.0602394
\(287\) 0 0
\(288\) −14.5453 −0.857091
\(289\) −2.59266 −0.152509
\(290\) 5.45164 0.320131
\(291\) 6.44837i 0.378010i
\(292\) 12.3629i 0.723485i
\(293\) 12.6527 0.739177 0.369588 0.929196i \(-0.379499\pi\)
0.369588 + 0.929196i \(0.379499\pi\)
\(294\) 0 0
\(295\) 12.7053i 0.739731i
\(296\) 1.59407i 0.0926532i
\(297\) 0.936350 0.0543325
\(298\) 13.0548i 0.756242i
\(299\) −26.8506 + 12.8331i −1.55281 + 0.742159i
\(300\) 7.31833i 0.422524i
\(301\) 0 0
\(302\) 8.70412 0.500866
\(303\) −4.31774 −0.248047
\(304\) −7.97089 −0.457162
\(305\) 36.5820 2.09468
\(306\) −5.88260 −0.336286
\(307\) 1.54074i 0.0879346i −0.999033 0.0439673i \(-0.986000\pi\)
0.999033 0.0439673i \(-0.0139997\pi\)
\(308\) 0 0
\(309\) 5.49411i 0.312549i
\(310\) 10.9507i 0.621960i
\(311\) 5.82103i 0.330080i 0.986287 + 0.165040i \(0.0527754\pi\)
−0.986287 + 0.165040i \(0.947225\pi\)
\(312\) 7.82109 0.442782
\(313\) −16.7462 −0.946554 −0.473277 0.880914i \(-0.656929\pi\)
−0.473277 + 0.880914i \(0.656929\pi\)
\(314\) 11.0315 0.622542
\(315\) 0 0
\(316\) 11.8551i 0.666902i
\(317\) 11.5813 0.650473 0.325236 0.945633i \(-0.394556\pi\)
0.325236 + 0.945633i \(0.394556\pi\)
\(318\) 0.457511 0.0256560
\(319\) 0.741942i 0.0415408i
\(320\) −3.29266 −0.184065
\(321\) −4.15688 −0.232015
\(322\) 0 0
\(323\) −14.6296 −0.814011
\(324\) −9.93877 −0.552154
\(325\) 46.4398i 2.57602i
\(326\) −0.537163 −0.0297507
\(327\) −9.15888 −0.506487
\(328\) 8.99984i 0.496933i
\(329\) 0 0
\(330\) −0.341996 −0.0188263
\(331\) 24.6051 1.35242 0.676208 0.736711i \(-0.263622\pi\)
0.676208 + 0.736711i \(0.263622\pi\)
\(332\) 17.2337 0.945822
\(333\) 1.97783i 0.108385i
\(334\) 14.5767i 0.797600i
\(335\) 39.5627i 2.16154i
\(336\) 0 0
\(337\) 28.2320i 1.53789i −0.639312 0.768947i \(-0.720781\pi\)
0.639312 0.768947i \(-0.279219\pi\)
\(338\) 14.9034 0.810638
\(339\) 1.65982 0.0901491
\(340\) −22.2436 −1.20633
\(341\) −1.49034 −0.0807066
\(342\) 5.97334 0.323001
\(343\) 0 0
\(344\) 16.8942i 0.910872i
\(345\) 9.01386 4.30814i 0.485290 0.231943i
\(346\) 9.15114i 0.491968i
\(347\) 10.1989 0.547507 0.273754 0.961800i \(-0.411735\pi\)
0.273754 + 0.961800i \(0.411735\pi\)
\(348\) 2.58225i 0.138423i
\(349\) 0.948313i 0.0507620i −0.999678 0.0253810i \(-0.991920\pi\)
0.999678 0.0253810i \(-0.00807990\pi\)
\(350\) 0 0
\(351\) 20.6797 1.10380
\(352\) 1.54079i 0.0821246i
\(353\) 10.9846i 0.584650i 0.956319 + 0.292325i \(0.0944289\pi\)
−0.956319 + 0.292325i \(0.905571\pi\)
\(354\) 1.23879 0.0658411
\(355\) 20.4109 1.08330
\(356\) −9.26394 −0.490988
\(357\) 0 0
\(358\) −1.81332 −0.0958369
\(359\) 10.5939i 0.559124i 0.960128 + 0.279562i \(0.0901892\pi\)
−0.960128 + 0.279562i \(0.909811\pi\)
\(360\) 20.0339 1.05588
\(361\) −4.14478 −0.218146
\(362\) 1.65794 0.0871393
\(363\) 6.43892i 0.337956i
\(364\) 0 0
\(365\) 26.3365i 1.37851i
\(366\) 3.56683i 0.186441i
\(367\) −11.5396 −0.602365 −0.301182 0.953567i \(-0.597381\pi\)
−0.301182 + 0.953567i \(0.597381\pi\)
\(368\) −4.27696 8.94861i −0.222952 0.466479i
\(369\) 11.1665i 0.581306i
\(370\) 1.53946i 0.0800326i
\(371\) 0 0
\(372\) −5.18698 −0.268932
\(373\) 11.7192i 0.606796i 0.952864 + 0.303398i \(0.0981212\pi\)
−0.952864 + 0.303398i \(0.901879\pi\)
\(374\) 0.623147i 0.0322222i
\(375\) 5.17428i 0.267199i
\(376\) 13.3569i 0.688830i
\(377\) 16.3861i 0.843930i
\(378\) 0 0
\(379\) 14.9631i 0.768602i 0.923208 + 0.384301i \(0.125557\pi\)
−0.923208 + 0.384301i \(0.874443\pi\)
\(380\) 22.5867 1.15867
\(381\) 3.88207i 0.198884i
\(382\) 12.8871i 0.659362i
\(383\) 26.5424 1.35625 0.678126 0.734946i \(-0.262793\pi\)
0.678126 + 0.734946i \(0.262793\pi\)
\(384\) 6.78747i 0.346372i
\(385\) 0 0
\(386\) −7.95819 −0.405061
\(387\) 20.9614i 1.06553i
\(388\) −18.1401 −0.920924
\(389\) 11.4339i 0.579720i 0.957069 + 0.289860i \(0.0936088\pi\)
−0.957069 + 0.289860i \(0.906391\pi\)
\(390\) −7.55315 −0.382469
\(391\) −7.84981 16.4240i −0.396982 0.830600i
\(392\) 0 0
\(393\) −4.66117 −0.235125
\(394\) −1.32610 −0.0668079
\(395\) 25.2547i 1.27070i
\(396\) 1.23604i 0.0621134i
\(397\) 12.2503i 0.614825i 0.951576 + 0.307412i \(0.0994631\pi\)
−0.951576 + 0.307412i \(0.900537\pi\)
\(398\) 7.05469 0.353620
\(399\) 0 0
\(400\) 15.4772 0.773861
\(401\) 8.54274i 0.426604i −0.976986 0.213302i \(-0.931578\pi\)
0.976986 0.213302i \(-0.0684219\pi\)
\(402\) −3.85745 −0.192392
\(403\) −32.9149 −1.63961
\(404\) 12.1464i 0.604304i
\(405\) 21.1724 1.05206
\(406\) 0 0
\(407\) −0.209513 −0.0103852
\(408\) 4.78403i 0.236845i
\(409\) 27.9808i 1.38356i −0.722109 0.691780i \(-0.756827\pi\)
0.722109 0.691780i \(-0.243173\pi\)
\(410\) 8.69152i 0.429244i
\(411\) 12.4692 0.615060
\(412\) −15.4556 −0.761445
\(413\) 0 0
\(414\) 3.20512 + 6.70603i 0.157523 + 0.329583i
\(415\) −36.7126 −1.80215
\(416\) 34.0292i 1.66842i
\(417\) 0.0451673 0.00221185
\(418\) 0.632759i 0.0309492i
\(419\) −15.6695 −0.765503 −0.382751 0.923851i \(-0.625023\pi\)
−0.382751 + 0.923851i \(0.625023\pi\)
\(420\) 0 0
\(421\) 34.7278i 1.69253i −0.532764 0.846264i \(-0.678847\pi\)
0.532764 0.846264i \(-0.321153\pi\)
\(422\) 8.76657 0.426750
\(423\) 16.5725i 0.805784i
\(424\) 2.83901i 0.137874i
\(425\) 28.4065 1.37792
\(426\) 1.99011i 0.0964212i
\(427\) 0 0
\(428\) 11.6938i 0.565244i
\(429\) 1.02795i 0.0496298i
\(430\) 16.3154i 0.786799i
\(431\) 8.22776i 0.396317i 0.980170 + 0.198159i \(0.0634961\pi\)
−0.980170 + 0.198159i \(0.936504\pi\)
\(432\) 6.89204i 0.331593i
\(433\) 0.384659 0.0184855 0.00924276 0.999957i \(-0.497058\pi\)
0.00924276 + 0.999957i \(0.497058\pi\)
\(434\) 0 0
\(435\) 5.50091i 0.263749i
\(436\) 25.7651i 1.23393i
\(437\) 7.97089 + 16.6774i 0.381300 + 0.797787i
\(438\) 2.56786 0.122697
\(439\) 4.85503i 0.231718i 0.993266 + 0.115859i \(0.0369620\pi\)
−0.993266 + 0.115859i \(0.963038\pi\)
\(440\) 2.12220i 0.101172i
\(441\) 0 0
\(442\) 13.7625i 0.654616i
\(443\) −31.1431 −1.47965 −0.739827 0.672797i \(-0.765093\pi\)
−0.739827 + 0.672797i \(0.765093\pi\)
\(444\) −0.729187 −0.0346057
\(445\) 19.7348 0.935519
\(446\) 8.01166i 0.379363i
\(447\) −13.1728 −0.623050
\(448\) 0 0
\(449\) −15.2127 −0.717931 −0.358965 0.933351i \(-0.616870\pi\)
−0.358965 + 0.933351i \(0.616870\pi\)
\(450\) −11.5985 −0.546760
\(451\) 1.18288 0.0556994
\(452\) 4.66929i 0.219625i
\(453\) 8.78279i 0.412651i
\(454\) −8.78854 −0.412467
\(455\) 0 0
\(456\) 4.85782i 0.227488i
\(457\) 8.34997i 0.390595i 0.980744 + 0.195298i \(0.0625673\pi\)
−0.980744 + 0.195298i \(0.937433\pi\)
\(458\) 9.13181 0.426701
\(459\) 12.6495i 0.590426i
\(460\) 12.1194 + 25.3572i 0.565068 + 1.18228i
\(461\) 3.94962i 0.183952i 0.995761 + 0.0919762i \(0.0293184\pi\)
−0.995761 + 0.0919762i \(0.970682\pi\)
\(462\) 0 0
\(463\) 24.9864 1.16121 0.580607 0.814184i \(-0.302815\pi\)
0.580607 + 0.814184i \(0.302815\pi\)
\(464\) −5.46109 −0.253525
\(465\) 11.0497 0.512418
\(466\) 13.0922 0.606484
\(467\) −3.83311 −0.177375 −0.0886876 0.996059i \(-0.528267\pi\)
−0.0886876 + 0.996059i \(0.528267\pi\)
\(468\) 27.2986i 1.26188i
\(469\) 0 0
\(470\) 12.8993i 0.595002i
\(471\) 11.1312i 0.512898i
\(472\) 7.68713i 0.353829i
\(473\) −2.22045 −0.102096
\(474\) −2.46239 −0.113101
\(475\) −28.8447 −1.32348
\(476\) 0 0
\(477\) 3.52249i 0.161284i
\(478\) −3.78337 −0.173047
\(479\) 0.605754 0.0276776 0.0138388 0.999904i \(-0.495595\pi\)
0.0138388 + 0.999904i \(0.495595\pi\)
\(480\) 11.4238i 0.521421i
\(481\) −4.62719 −0.210982
\(482\) −0.338552 −0.0154206
\(483\) 0 0
\(484\) −18.1135 −0.823342
\(485\) 38.6435 1.75471
\(486\) 7.90609i 0.358627i
\(487\) 20.2406 0.917188 0.458594 0.888646i \(-0.348353\pi\)
0.458594 + 0.888646i \(0.348353\pi\)
\(488\) 22.1333 1.00193
\(489\) 0.542019i 0.0245109i
\(490\) 0 0
\(491\) 9.16948 0.413813 0.206906 0.978361i \(-0.433660\pi\)
0.206906 + 0.978361i \(0.433660\pi\)
\(492\) 4.11687 0.185603
\(493\) −10.0231 −0.451420
\(494\) 13.9748i 0.628755i
\(495\) 2.63311i 0.118350i
\(496\) 10.9697i 0.492555i
\(497\) 0 0
\(498\) 3.57956i 0.160404i
\(499\) 2.37066 0.106125 0.0530626 0.998591i \(-0.483102\pi\)
0.0530626 + 0.998591i \(0.483102\pi\)
\(500\) −14.5559 −0.650961
\(501\) −14.7084 −0.657124
\(502\) −1.43924 −0.0642362
\(503\) 28.6649 1.27811 0.639053 0.769163i \(-0.279327\pi\)
0.639053 + 0.769163i \(0.279327\pi\)
\(504\) 0 0
\(505\) 25.8751i 1.15143i
\(506\) 0.710374 0.339520i 0.0315800 0.0150935i
\(507\) 15.0381i 0.667866i
\(508\) −10.9208 −0.484530
\(509\) 15.1398i 0.671061i −0.942029 0.335530i \(-0.891084\pi\)
0.942029 0.335530i \(-0.108916\pi\)
\(510\) 4.62014i 0.204583i
\(511\) 0 0
\(512\) −20.1831 −0.891975
\(513\) 12.8446i 0.567102i
\(514\) 11.5613i 0.509946i
\(515\) 32.9248 1.45084
\(516\) −7.72804 −0.340208
\(517\) 1.75554 0.0772084
\(518\) 0 0
\(519\) −9.23385 −0.405321
\(520\) 46.8698i 2.05538i
\(521\) −0.724384 −0.0317358 −0.0158679 0.999874i \(-0.505051\pi\)
−0.0158679 + 0.999874i \(0.505051\pi\)
\(522\) 4.09251 0.179124
\(523\) 23.5559 1.03003 0.515014 0.857182i \(-0.327787\pi\)
0.515014 + 0.857182i \(0.327787\pi\)
\(524\) 13.1125i 0.572821i
\(525\) 0 0
\(526\) 13.3792i 0.583360i
\(527\) 20.1335i 0.877031i
\(528\) 0.342589 0.0149093
\(529\) −14.4461 + 17.8972i −0.628091 + 0.778140i
\(530\) 2.74175i 0.119094i
\(531\) 9.53777i 0.413904i
\(532\) 0 0
\(533\) 26.1244 1.13157
\(534\) 1.92418i 0.0832676i
\(535\) 24.9112i 1.07700i
\(536\) 23.9367i 1.03391i
\(537\) 1.82971i 0.0789578i
\(538\) 9.23255i 0.398043i
\(539\) 0 0
\(540\) 19.5296i 0.840419i
\(541\) −19.5886 −0.842179 −0.421089 0.907019i \(-0.638352\pi\)
−0.421089 + 0.907019i \(0.638352\pi\)
\(542\) 8.47049i 0.363839i
\(543\) 1.67292i 0.0717920i
\(544\) −20.8151 −0.892440
\(545\) 54.8869i 2.35110i
\(546\) 0 0
\(547\) −5.60011 −0.239443 −0.119722 0.992808i \(-0.538200\pi\)
−0.119722 + 0.992808i \(0.538200\pi\)
\(548\) 35.0775i 1.49843i
\(549\) 27.4619 1.17204
\(550\) 1.22864i 0.0523894i
\(551\) 10.1777 0.433586
\(552\) 5.45369 2.60657i 0.232124 0.110943i
\(553\) 0 0
\(554\) 13.6340 0.579254
\(555\) 1.55337 0.0659369
\(556\) 0.127062i 0.00538861i
\(557\) 23.3410i 0.988991i −0.869180 0.494495i \(-0.835353\pi\)
0.869180 0.494495i \(-0.164647\pi\)
\(558\) 8.22064i 0.348007i
\(559\) −49.0397 −2.07416
\(560\) 0 0
\(561\) 0.628779 0.0265471
\(562\) 9.75921i 0.411668i
\(563\) −10.4002 −0.438316 −0.219158 0.975689i \(-0.570331\pi\)
−0.219158 + 0.975689i \(0.570331\pi\)
\(564\) 6.10996 0.257276
\(565\) 9.94690i 0.418469i
\(566\) 7.13456 0.299888
\(567\) 0 0
\(568\) 12.3493 0.518165
\(569\) 16.6323i 0.697261i −0.937260 0.348630i \(-0.886647\pi\)
0.937260 0.348630i \(-0.113353\pi\)
\(570\) 4.69140i 0.196501i
\(571\) 12.1423i 0.508141i 0.967186 + 0.254071i \(0.0817696\pi\)
−0.967186 + 0.254071i \(0.918230\pi\)
\(572\) 2.89175 0.120910
\(573\) 13.0036 0.543233
\(574\) 0 0
\(575\) −15.4772 32.3828i −0.645445 1.35045i
\(576\) −2.47177 −0.102991
\(577\) 0.160752i 0.00669218i 0.999994 + 0.00334609i \(0.00106510\pi\)
−0.999994 + 0.00334609i \(0.998935\pi\)
\(578\) 1.51491 0.0630118
\(579\) 8.03012i 0.333720i
\(580\) 15.4748 0.642555
\(581\) 0 0
\(582\) 3.76782i 0.156181i
\(583\) 0.373139 0.0154539
\(584\) 15.9344i 0.659372i
\(585\) 58.1536i 2.40435i
\(586\) −7.39303 −0.305403
\(587\) 36.0106i 1.48632i −0.669116 0.743158i \(-0.733327\pi\)
0.669116 0.743158i \(-0.266673\pi\)
\(588\) 0 0
\(589\) 20.4441i 0.842384i
\(590\) 7.42378i 0.305632i
\(591\) 1.33809i 0.0550415i
\(592\) 1.54213i 0.0633810i
\(593\) 36.2156i 1.48720i 0.668626 + 0.743599i \(0.266883\pi\)
−0.668626 + 0.743599i \(0.733117\pi\)
\(594\) −0.547115 −0.0224484
\(595\) 0 0
\(596\) 37.0567i 1.51790i
\(597\) 7.11845i 0.291339i
\(598\) 15.6889 7.49848i 0.641569 0.306635i
\(599\) −23.5453 −0.962036 −0.481018 0.876711i \(-0.659733\pi\)
−0.481018 + 0.876711i \(0.659733\pi\)
\(600\) 9.43252i 0.385081i
\(601\) 0.940529i 0.0383650i 0.999816 + 0.0191825i \(0.00610635\pi\)
−0.999816 + 0.0191825i \(0.993894\pi\)
\(602\) 0 0
\(603\) 29.6994i 1.20945i
\(604\) 24.7071 1.00532
\(605\) 38.5868 1.56878
\(606\) 2.52288 0.102485
\(607\) 7.52999i 0.305633i 0.988255 + 0.152816i \(0.0488343\pi\)
−0.988255 + 0.152816i \(0.951166\pi\)
\(608\) 21.1362 0.857185
\(609\) 0 0
\(610\) −21.3751 −0.865453
\(611\) 38.7719 1.56854
\(612\) −16.6981 −0.674980
\(613\) 26.9736i 1.08945i −0.838613 0.544727i \(-0.816633\pi\)
0.838613 0.544727i \(-0.183367\pi\)
\(614\) 0.900263i 0.0363317i
\(615\) −8.77008 −0.353644
\(616\) 0 0
\(617\) 9.25381i 0.372544i −0.982498 0.186272i \(-0.940359\pi\)
0.982498 0.186272i \(-0.0596406\pi\)
\(618\) 3.21024i 0.129135i
\(619\) −31.5176 −1.26680 −0.633399 0.773825i \(-0.718341\pi\)
−0.633399 + 0.773825i \(0.718341\pi\)
\(620\) 31.0843i 1.24837i
\(621\) 14.4201 6.89204i 0.578659 0.276568i
\(622\) 3.40126i 0.136378i
\(623\) 0 0
\(624\) 7.56625 0.302892
\(625\) −6.41112 −0.256445
\(626\) 9.78494 0.391085
\(627\) −0.638478 −0.0254984
\(628\) 31.3135 1.24954
\(629\) 2.83038i 0.112855i
\(630\) 0 0
\(631\) 14.2570i 0.567562i 0.958889 + 0.283781i \(0.0915889\pi\)
−0.958889 + 0.283781i \(0.908411\pi\)
\(632\) 15.2799i 0.607803i
\(633\) 8.84580i 0.351589i
\(634\) −6.76705 −0.268754
\(635\) 23.2643 0.923214
\(636\) 1.29867 0.0514957
\(637\) 0 0
\(638\) 0.433521i 0.0171633i
\(639\) 15.3224 0.606143
\(640\) 40.6756 1.60785
\(641\) 2.02889i 0.0801362i 0.999197 + 0.0400681i \(0.0127575\pi\)
−0.999197 + 0.0400681i \(0.987243\pi\)
\(642\) 2.42889 0.0958607
\(643\) 42.6136 1.68052 0.840259 0.542186i \(-0.182403\pi\)
0.840259 + 0.542186i \(0.182403\pi\)
\(644\) 0 0
\(645\) 16.4629 0.648225
\(646\) 8.54815 0.336322
\(647\) 22.6729i 0.891364i −0.895191 0.445682i \(-0.852961\pi\)
0.895191 0.445682i \(-0.147039\pi\)
\(648\) 12.8100 0.503224
\(649\) 1.01034 0.0396594
\(650\) 27.1351i 1.06433i
\(651\) 0 0
\(652\) −1.52477 −0.0597145
\(653\) 23.1850 0.907301 0.453650 0.891180i \(-0.350122\pi\)
0.453650 + 0.891180i \(0.350122\pi\)
\(654\) 5.35159 0.209264
\(655\) 27.9332i 1.09144i
\(656\) 8.70659i 0.339935i
\(657\) 19.7706i 0.771325i
\(658\) 0 0
\(659\) 33.6441i 1.31059i 0.755375 + 0.655293i \(0.227455\pi\)
−0.755375 + 0.655293i \(0.772545\pi\)
\(660\) −0.970775 −0.0377874
\(661\) 41.5145 1.61473 0.807363 0.590055i \(-0.200894\pi\)
0.807363 + 0.590055i \(0.200894\pi\)
\(662\) −14.3769 −0.558774
\(663\) 13.8869 0.539322
\(664\) −22.2123 −0.862006
\(665\) 0 0
\(666\) 1.15566i 0.0447809i
\(667\) 5.46109 + 11.4262i 0.211454 + 0.442422i
\(668\) 41.3767i 1.60091i
\(669\) −8.08407 −0.312548
\(670\) 23.1167i 0.893077i
\(671\) 2.90905i 0.112303i
\(672\) 0 0
\(673\) 20.9048 0.805820 0.402910 0.915239i \(-0.367999\pi\)
0.402910 + 0.915239i \(0.367999\pi\)
\(674\) 16.4961i 0.635407i
\(675\) 24.9405i 0.959962i
\(676\) 42.3041 1.62708
\(677\) −16.7782 −0.644838 −0.322419 0.946597i \(-0.604496\pi\)
−0.322419 + 0.946597i \(0.604496\pi\)
\(678\) −0.969844 −0.0372466
\(679\) 0 0
\(680\) 28.6695 1.09943
\(681\) 8.86798i 0.339822i
\(682\) 0.870817 0.0333453
\(683\) 44.9654 1.72055 0.860276 0.509828i \(-0.170291\pi\)
0.860276 + 0.509828i \(0.170291\pi\)
\(684\) 16.9557 0.648315
\(685\) 74.7248i 2.85509i
\(686\) 0 0
\(687\) 9.21435i 0.351549i
\(688\) 16.3437i 0.623098i
\(689\) 8.24096 0.313956
\(690\) −5.26686 + 2.51728i −0.200506 + 0.0958310i
\(691\) 10.5467i 0.401215i 0.979672 + 0.200608i \(0.0642917\pi\)
−0.979672 + 0.200608i \(0.935708\pi\)
\(692\) 25.9760i 0.987460i
\(693\) 0 0
\(694\) −5.95930 −0.226212
\(695\) 0.270677i 0.0102673i
\(696\) 3.32824i 0.126156i
\(697\) 15.9799i 0.605280i
\(698\) 0.554105i 0.0209732i
\(699\) 13.2105i 0.499668i
\(700\) 0 0
\(701\) 13.2757i 0.501417i 0.968063 + 0.250709i \(0.0806636\pi\)
−0.968063 + 0.250709i \(0.919336\pi\)
\(702\) −12.0833 −0.456055
\(703\) 2.87404i 0.108396i
\(704\) 0.261836i 0.00986833i
\(705\) −13.0159 −0.490208
\(706\) 6.41835i 0.241558i
\(707\) 0 0
\(708\) 3.51639 0.132154
\(709\) 16.9406i 0.636217i 0.948054 + 0.318109i \(0.103048\pi\)
−0.948054 + 0.318109i \(0.896952\pi\)
\(710\) −11.9262 −0.447584
\(711\) 18.9585i 0.711000i
\(712\) 11.9402 0.447478
\(713\) −22.9518 + 10.9697i −0.859551 + 0.410819i
\(714\) 0 0
\(715\) −6.16024 −0.230380
\(716\) −5.14721 −0.192360
\(717\) 3.81756i 0.142570i
\(718\) 6.19007i 0.231012i
\(719\) 45.7999i 1.70805i −0.520235 0.854023i \(-0.674155\pi\)
0.520235 0.854023i \(-0.325845\pi\)
\(720\) 19.3811 0.722291
\(721\) 0 0
\(722\) 2.42182 0.0901308
\(723\) 0.341612i 0.0127047i
\(724\) 4.70615 0.174903
\(725\) −19.7623 −0.733954
\(726\) 3.76230i 0.139632i
\(727\) 27.5793 1.02286 0.511429 0.859325i \(-0.329116\pi\)
0.511429 + 0.859325i \(0.329116\pi\)
\(728\) 0 0
\(729\) 9.99940 0.370348
\(730\) 15.3886i 0.569556i
\(731\) 29.9968i 1.10947i
\(732\) 10.1246i 0.374217i
\(733\) −13.0343 −0.481433 −0.240717 0.970595i \(-0.577382\pi\)
−0.240717 + 0.970595i \(0.577382\pi\)
\(734\) 6.74269 0.248877
\(735\) 0 0
\(736\) 11.3411 + 23.7287i 0.418037 + 0.874653i
\(737\) −3.14608 −0.115887
\(738\) 6.52467i 0.240176i
\(739\) −28.6649 −1.05445 −0.527227 0.849724i \(-0.676768\pi\)
−0.527227 + 0.849724i \(0.676768\pi\)
\(740\) 4.36984i 0.160638i
\(741\) −14.1011 −0.518017
\(742\) 0 0
\(743\) 22.7481i 0.834547i −0.908781 0.417274i \(-0.862986\pi\)
0.908781 0.417274i \(-0.137014\pi\)
\(744\) 6.68544 0.245100
\(745\) 78.9411i 2.89218i
\(746\) 6.84759i 0.250708i
\(747\) −27.5599 −1.00836
\(748\) 1.76884i 0.0646751i
\(749\) 0 0
\(750\) 3.02337i 0.110398i
\(751\) 29.0873i 1.06141i −0.847556 0.530705i \(-0.821927\pi\)
0.847556 0.530705i \(-0.178073\pi\)
\(752\) 12.9217i 0.471206i
\(753\) 1.45224i 0.0529227i
\(754\) 9.57453i 0.348684i
\(755\) −52.6331 −1.91551
\(756\) 0 0
\(757\) 31.5963i 1.14839i 0.818720 + 0.574193i \(0.194684\pi\)
−0.818720 + 0.574193i \(0.805316\pi\)
\(758\) 8.74302i 0.317561i
\(759\) −0.342589 0.716794i −0.0124352 0.0260180i
\(760\) −29.1117 −1.05599
\(761\) 3.04353i 0.110328i −0.998477 0.0551640i \(-0.982432\pi\)
0.998477 0.0551640i \(-0.0175682\pi\)
\(762\) 2.26832i 0.0821725i
\(763\) 0 0
\(764\) 36.5808i 1.32345i
\(765\) 35.5716 1.28609
\(766\) −15.5089 −0.560358
\(767\) 22.3139 0.805708
\(768\) 2.86708i 0.103457i
\(769\) −44.5932 −1.60807 −0.804036 0.594580i \(-0.797318\pi\)
−0.804036 + 0.594580i \(0.797318\pi\)
\(770\) 0 0
\(771\) 11.6658 0.420133
\(772\) −22.5898 −0.813024
\(773\) −16.7044 −0.600817 −0.300408 0.953811i \(-0.597123\pi\)
−0.300408 + 0.953811i \(0.597123\pi\)
\(774\) 12.2479i 0.440240i
\(775\) 39.6967i 1.42595i
\(776\) 23.3806 0.839315
\(777\) 0 0
\(778\) 6.68088i 0.239521i
\(779\) 16.2263i 0.581369i
\(780\) −21.4401 −0.767677
\(781\) 1.62310i 0.0580793i
\(782\) 4.58670 + 9.59667i 0.164020 + 0.343176i
\(783\) 8.80019i 0.314493i
\(784\) 0 0
\(785\) −66.7064 −2.38085
\(786\) 2.72355 0.0971458
\(787\) 3.03184 0.108073 0.0540367 0.998539i \(-0.482791\pi\)
0.0540367 + 0.998539i \(0.482791\pi\)
\(788\) −3.76421 −0.134094
\(789\) −13.5001 −0.480617
\(790\) 14.7565i 0.525012i
\(791\) 0 0
\(792\) 1.59312i 0.0566091i
\(793\) 64.2478i 2.28151i
\(794\) 7.15793i 0.254025i
\(795\) −2.76653 −0.0981188
\(796\) 20.0251 0.709772
\(797\) 2.93351 0.103910 0.0519551 0.998649i \(-0.483455\pi\)
0.0519551 + 0.998649i \(0.483455\pi\)
\(798\) 0 0
\(799\) 23.7161i 0.839017i
\(800\) −41.0405 −1.45100
\(801\) 14.8148 0.523454
\(802\) 4.99158i 0.176259i
\(803\) 2.09431 0.0739066
\(804\) −10.9496 −0.386162
\(805\) 0 0
\(806\) 19.2324 0.677433
\(807\) −9.31599 −0.327938
\(808\) 15.6553i 0.550752i
\(809\) −49.4454 −1.73841 −0.869203 0.494455i \(-0.835368\pi\)
−0.869203 + 0.494455i \(0.835368\pi\)
\(810\) −12.3711 −0.434677
\(811\) 23.8421i 0.837210i 0.908168 + 0.418605i \(0.137481\pi\)
−0.908168 + 0.418605i \(0.862519\pi\)
\(812\) 0 0
\(813\) −8.54705 −0.299758
\(814\) 0.122420 0.00429081
\(815\) 3.24818 0.113779
\(816\) 4.62815i 0.162018i
\(817\) 30.4595i 1.06564i
\(818\) 16.3493i 0.571641i
\(819\) 0 0
\(820\) 24.6714i 0.861562i
\(821\) −31.8587 −1.11188 −0.555938 0.831224i \(-0.687641\pi\)
−0.555938 + 0.831224i \(0.687641\pi\)
\(822\) −7.28583 −0.254122
\(823\) −37.5306 −1.30823 −0.654117 0.756394i \(-0.726959\pi\)
−0.654117 + 0.756394i \(0.726959\pi\)
\(824\) 19.9206 0.693968
\(825\) 1.23974 0.0431624
\(826\) 0 0
\(827\) 13.6994i 0.476373i 0.971219 + 0.238187i \(0.0765530\pi\)
−0.971219 + 0.238187i \(0.923447\pi\)
\(828\) 9.09792 + 19.0354i 0.316175 + 0.661528i
\(829\) 11.5400i 0.400802i −0.979714 0.200401i \(-0.935775\pi\)
0.979714 0.200401i \(-0.0642245\pi\)
\(830\) 21.4514 0.744589
\(831\) 13.7573i 0.477234i
\(832\) 5.78278i 0.200482i
\(833\) 0 0
\(834\) −0.0263916 −0.000913865
\(835\) 88.1439i 3.05034i
\(836\) 1.79612i 0.0621201i
\(837\) 17.6770 0.611006
\(838\) 9.15576 0.316280
\(839\) −25.1844 −0.869463 −0.434732 0.900560i \(-0.643157\pi\)
−0.434732 + 0.900560i \(0.643157\pi\)
\(840\) 0 0
\(841\) −22.0269 −0.759549
\(842\) 20.2917i 0.699297i
\(843\) 9.84742 0.339163
\(844\) 24.8844 0.856556
\(845\) −90.1196 −3.10021
\(846\) 9.68343i 0.332923i
\(847\) 0 0
\(848\) 2.74650i 0.0943154i
\(849\) 7.19905i 0.247071i
\(850\) −16.5981 −0.569310
\(851\) −3.22657 + 1.54213i −0.110605 + 0.0528634i
\(852\) 5.64904i 0.193533i
\(853\) 6.71783i 0.230014i 0.993365 + 0.115007i \(0.0366891\pi\)
−0.993365 + 0.115007i \(0.963311\pi\)
\(854\) 0 0
\(855\) −36.1203 −1.23529
\(856\) 15.0721i 0.515153i
\(857\) 51.7893i 1.76909i 0.466456 + 0.884544i \(0.345531\pi\)
−0.466456 + 0.884544i \(0.654469\pi\)
\(858\) 0.600637i 0.0205054i
\(859\) 45.4636i 1.55120i −0.631227 0.775598i \(-0.717448\pi\)
0.631227 0.775598i \(-0.282552\pi\)
\(860\) 46.3122i 1.57923i
\(861\) 0 0
\(862\) 4.80753i 0.163745i
\(863\) −13.9393 −0.474501 −0.237250 0.971449i \(-0.576246\pi\)
−0.237250 + 0.971449i \(0.576246\pi\)
\(864\) 18.2754i 0.621741i
\(865\) 55.3362i 1.88149i
\(866\) −0.224759 −0.00763761
\(867\) 1.52860i 0.0519140i
\(868\) 0 0
\(869\) −2.00829 −0.0681264
\(870\) 3.21422i 0.108972i
\(871\) −69.4826 −2.35433
\(872\) 33.2084i 1.12458i
\(873\) 29.0094 0.981819
\(874\) −4.65744 9.74470i −0.157540 0.329619i
\(875\) 0 0
\(876\) 7.28902 0.246273
\(877\) −30.3265 −1.02405 −0.512026 0.858970i \(-0.671105\pi\)
−0.512026 + 0.858970i \(0.671105\pi\)
\(878\) 2.83682i 0.0957381i
\(879\) 7.45985i 0.251615i
\(880\) 2.05305i 0.0692084i
\(881\) −17.2441 −0.580968 −0.290484 0.956880i \(-0.593816\pi\)
−0.290484 + 0.956880i \(0.593816\pi\)
\(882\) 0 0
\(883\) 2.24713 0.0756221 0.0378110 0.999285i \(-0.487962\pi\)
0.0378110 + 0.999285i \(0.487962\pi\)
\(884\) 39.0656i 1.31392i
\(885\) −7.49088 −0.251803
\(886\) 18.1971 0.611344
\(887\) 41.4905i 1.39311i 0.717501 + 0.696557i \(0.245286\pi\)
−0.717501 + 0.696557i \(0.754714\pi\)
\(888\) 0.939842 0.0315390
\(889\) 0 0
\(890\) −11.5312 −0.386525
\(891\) 1.68365i 0.0564045i
\(892\) 22.7415i 0.761443i
\(893\) 24.0819i 0.805872i
\(894\) 7.69693 0.257424
\(895\) 10.9650 0.366519
\(896\) 0 0
\(897\) −7.56625 15.8308i −0.252630 0.528573i
\(898\) 8.88887 0.296625
\(899\) 14.0068i 0.467154i
\(900\) −32.9231 −1.09744
\(901\) 5.04086i 0.167935i
\(902\) −0.691161 −0.0230132
\(903\) 0 0
\(904\) 6.01821i 0.200163i
\(905\) −10.0254 −0.333256
\(906\) 5.13184i 0.170494i
\(907\) 39.9299i 1.32585i 0.748686 + 0.662925i \(0.230685\pi\)
−0.748686 + 0.662925i \(0.769315\pi\)
\(908\) −24.9468 −0.827888
\(909\) 19.4243i 0.644262i
\(910\) 0 0
\(911\) 39.5814i 1.31139i 0.755026 + 0.655695i \(0.227624\pi\)
−0.755026 + 0.655695i \(0.772376\pi\)
\(912\) 4.69954i 0.155617i
\(913\) 2.91943i 0.0966192i
\(914\) 4.87894i 0.161381i
\(915\) 21.5683i 0.713026i
\(916\) 25.9212 0.856459
\(917\) 0 0
\(918\) 7.39116i 0.243945i
\(919\) 37.1480i 1.22540i 0.790316 + 0.612700i \(0.209916\pi\)
−0.790316 + 0.612700i \(0.790084\pi\)
\(920\) −15.6205 32.6826i −0.514994 1.07751i
\(921\) 0.908400 0.0299328
\(922\) 2.30779i 0.0760030i
\(923\) 35.8471i 1.17992i
\(924\) 0 0
\(925\) 5.58057i 0.183488i
\(926\) −14.5997 −0.479776
\(927\) 24.7164 0.811794
\(928\) 14.4810 0.475362
\(929\) 29.1264i 0.955607i 0.878467 + 0.477803i \(0.158567\pi\)
−0.878467 + 0.477803i \(0.841433\pi\)
\(930\) −6.45642 −0.211714
\(931\) 0 0
\(932\) 37.1629 1.21731
\(933\) −3.43201 −0.112359
\(934\) 2.23971 0.0732855
\(935\) 3.76812i 0.123231i
\(936\) 35.1848i 1.15005i
\(937\) 8.29853 0.271101 0.135551 0.990770i \(-0.456720\pi\)
0.135551 + 0.990770i \(0.456720\pi\)
\(938\) 0 0
\(939\) 9.87338i 0.322206i
\(940\) 36.6155i 1.19426i
\(941\) 8.30935 0.270877 0.135439 0.990786i \(-0.456756\pi\)
0.135439 + 0.990786i \(0.456756\pi\)
\(942\) 6.50402i 0.211912i
\(943\) 18.2167 8.70659i 0.593217 0.283526i
\(944\) 7.43665i 0.242042i
\(945\) 0 0
\(946\) 1.29742 0.0421828
\(947\) −3.84336 −0.124892 −0.0624462 0.998048i \(-0.519890\pi\)
−0.0624462 + 0.998048i \(0.519890\pi\)
\(948\) −6.98962 −0.227012
\(949\) 46.2539 1.50146
\(950\) 16.8541 0.546820
\(951\) 6.82821i 0.221420i
\(952\) 0 0
\(953\) 31.2541i 1.01242i −0.862411 0.506209i \(-0.831046\pi\)
0.862411 0.506209i \(-0.168954\pi\)
\(954\) 2.05821i 0.0666371i
\(955\) 77.9273i 2.52167i
\(956\) −10.7393 −0.347334
\(957\) −0.437440 −0.0141404
\(958\) −0.353946 −0.0114355
\(959\) 0 0
\(960\) 1.94131i 0.0626555i
\(961\) 2.86439 0.0923996
\(962\) 2.70370 0.0871707
\(963\) 18.7006i 0.602619i
\(964\) −0.960999 −0.0309517
\(965\) 48.1225 1.54912
\(966\) 0 0
\(967\) −37.6191 −1.20975 −0.604874 0.796321i \(-0.706776\pi\)
−0.604874 + 0.796321i \(0.706776\pi\)
\(968\) 23.3463 0.750379
\(969\) 8.62541i 0.277088i
\(970\) −22.5796 −0.724988
\(971\) −49.3754 −1.58453 −0.792266 0.610176i \(-0.791099\pi\)
−0.792266 + 0.610176i \(0.791099\pi\)
\(972\) 22.4419i 0.719823i
\(973\) 0 0
\(974\) −11.8267 −0.378952
\(975\) 27.3804 0.876873
\(976\) 21.4122 0.685387
\(977\) 52.7282i 1.68693i −0.537188 0.843463i \(-0.680513\pi\)
0.537188 0.843463i \(-0.319487\pi\)
\(978\) 0.316705i 0.0101271i
\(979\) 1.56934i 0.0501562i
\(980\) 0 0
\(981\) 41.2032i 1.31552i
\(982\) −5.35779 −0.170974
\(983\) −31.9447 −1.01888 −0.509438 0.860507i \(-0.670147\pi\)
−0.509438 + 0.860507i \(0.670147\pi\)
\(984\) −5.30619 −0.169155
\(985\) 8.01881 0.255501
\(986\) 5.85658 0.186512
\(987\) 0 0
\(988\) 39.6682i 1.26201i
\(989\) −34.1957 + 16.3437i −1.08736 + 0.519699i
\(990\) 1.53854i 0.0488981i
\(991\) 34.3595 1.09147 0.545733 0.837959i \(-0.316251\pi\)
0.545733 + 0.837959i \(0.316251\pi\)
\(992\) 29.0881i 0.923547i
\(993\) 14.5068i 0.460361i
\(994\) 0 0
\(995\) −42.6591 −1.35239
\(996\) 10.1608i 0.321957i
\(997\) 8.66264i 0.274349i −0.990547 0.137174i \(-0.956198\pi\)
0.990547 0.137174i \(-0.0438020\pi\)
\(998\) −1.38519 −0.0438474
\(999\) 2.48504 0.0786231
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.2.c.c.1126.10 28
7.4 even 3 161.2.g.a.68.9 yes 28
7.5 odd 6 161.2.g.a.45.10 yes 28
7.6 odd 2 inner 1127.2.c.c.1126.9 28
23.22 odd 2 inner 1127.2.c.c.1126.12 28
161.68 even 6 161.2.g.a.45.9 28
161.137 odd 6 161.2.g.a.68.10 yes 28
161.160 even 2 inner 1127.2.c.c.1126.11 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.g.a.45.9 28 161.68 even 6
161.2.g.a.45.10 yes 28 7.5 odd 6
161.2.g.a.68.9 yes 28 7.4 even 3
161.2.g.a.68.10 yes 28 161.137 odd 6
1127.2.c.c.1126.9 28 7.6 odd 2 inner
1127.2.c.c.1126.10 28 1.1 even 1 trivial
1127.2.c.c.1126.11 28 161.160 even 2 inner
1127.2.c.c.1126.12 28 23.22 odd 2 inner