Properties

Label 1134.2.g
Level $1134$
Weight $2$
Character orbit 1134.g
Rep. character $\chi_{1134}(163,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $64$
Newform subspaces $16$
Sturm bound $432$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 16 \)
Sturm bound: \(432\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(11\), \(17\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1134, [\chi])\).

Total New Old
Modular forms 480 64 416
Cusp forms 384 64 320
Eisenstein series 96 0 96

Trace form

\( 64 q - 32 q^{4} - 8 q^{7} + 8 q^{13} - 32 q^{16} + 8 q^{19} - 32 q^{25} + 4 q^{28} - 4 q^{31} - 4 q^{37} - 40 q^{43} - 12 q^{46} - 20 q^{49} - 4 q^{52} + 120 q^{55} - 12 q^{58} + 8 q^{61} + 64 q^{64} + 20 q^{67}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1134, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1134.2.g.a 1134.g 7.c $2$ $9.055$ \(\Q(\sqrt{-3}) \) None 1134.2.g.a \(-1\) \(0\) \(-4\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-4\zeta_{6}q^{5}+\cdots\)
1134.2.g.b 1134.g 7.c $2$ $9.055$ \(\Q(\sqrt{-3}) \) None 1134.2.g.b \(-1\) \(0\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+(1-3\zeta_{6})q^{7}+\cdots\)
1134.2.g.c 1134.g 7.c $2$ $9.055$ \(\Q(\sqrt{-3}) \) None 126.2.e.a \(-1\) \(0\) \(3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+3\zeta_{6}q^{5}+\cdots\)
1134.2.g.d 1134.g 7.c $2$ $9.055$ \(\Q(\sqrt{-3}) \) None 126.2.e.b \(-1\) \(0\) \(3\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+3\zeta_{6}q^{5}+\cdots\)
1134.2.g.e 1134.g 7.c $2$ $9.055$ \(\Q(\sqrt{-3}) \) None 126.2.e.a \(1\) \(0\) \(-3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-3\zeta_{6}q^{5}+\cdots\)
1134.2.g.f 1134.g 7.c $2$ $9.055$ \(\Q(\sqrt{-3}) \) None 126.2.e.b \(1\) \(0\) \(-3\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-3\zeta_{6}q^{5}+\cdots\)
1134.2.g.g 1134.g 7.c $2$ $9.055$ \(\Q(\sqrt{-3}) \) None 1134.2.g.b \(1\) \(0\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+(1-3\zeta_{6})q^{7}+\cdots\)
1134.2.g.h 1134.g 7.c $2$ $9.055$ \(\Q(\sqrt{-3}) \) None 1134.2.g.a \(1\) \(0\) \(4\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+4\zeta_{6}q^{5}+\cdots\)
1134.2.g.i 1134.g 7.c $4$ $9.055$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 1134.2.g.i \(-2\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(-1-\beta _{1})q^{4}+(-1-\beta _{1}+\cdots)q^{7}+\cdots\)
1134.2.g.j 1134.g 7.c $4$ $9.055$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 1134.2.g.i \(2\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-1-\beta _{1})q^{4}+(-1-\beta _{1}+\cdots)q^{7}+\cdots\)
1134.2.g.k 1134.g 7.c $6$ $9.055$ 6.0.309123.1 None 126.2.e.d \(-3\) \(0\) \(-5\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{4})q^{2}-\beta _{4}q^{4}+(-2+2\beta _{4}+\cdots)q^{5}+\cdots\)
1134.2.g.l 1134.g 7.c $6$ $9.055$ 6.0.309123.1 None 126.2.e.c \(-3\) \(0\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{4})q^{2}-\beta _{4}q^{4}-\beta _{2}q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\)
1134.2.g.m 1134.g 7.c $6$ $9.055$ 6.0.309123.1 None 126.2.e.c \(3\) \(0\) \(1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{4})q^{2}-\beta _{4}q^{4}+\beta _{2}q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\)
1134.2.g.n 1134.g 7.c $6$ $9.055$ 6.0.309123.1 None 126.2.e.d \(3\) \(0\) \(5\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{4})q^{2}-\beta _{4}q^{4}+(2-2\beta _{4}+\beta _{5})q^{5}+\cdots\)
1134.2.g.o 1134.g 7.c $8$ $9.055$ 8.0.454201344.7 None 1134.2.g.o \(-4\) \(0\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{4}q^{2}+(-1-\beta _{4})q^{4}+(\beta _{3}-\beta _{4}+\cdots)q^{5}+\cdots\)
1134.2.g.p 1134.g 7.c $8$ $9.055$ 8.0.454201344.7 None 1134.2.g.o \(4\) \(0\) \(-4\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{4}q^{2}+(-1-\beta _{4})q^{4}+(-\beta _{3}+\beta _{4}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1134, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1134, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(567, [\chi])\)\(^{\oplus 2}\)