Defining parameters
Level: | \( N \) | \(=\) | \( 114 = 2 \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 114.h (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(114, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 16 | 32 |
Cusp forms | 32 | 16 | 16 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(114, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
114.2.h.a | $2$ | $0.910$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(-3\) | \(-6\) | \(-4\) | \(q+(-1+\zeta_{6})q^{2}+(-2+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
114.2.h.b | $2$ | $0.910$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(-3\) | \(6\) | \(2\) | \(q+(-1+\zeta_{6})q^{2}+(-1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
114.2.h.c | $2$ | $0.910$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-3\) | \(-6\) | \(2\) | \(q+(1-\zeta_{6})q^{2}+(-1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
114.2.h.d | $2$ | $0.910$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(0\) | \(6\) | \(-4\) | \(q+(1-\zeta_{6})q^{2}+(1-2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\) |
114.2.h.e | $4$ | $0.910$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(-2\) | \(4\) | \(0\) | \(8\) | \(q+(-1+\beta _{2})q^{2}+(1-\beta _{3})q^{3}-\beta _{2}q^{4}+\cdots\) |
114.2.h.f | $4$ | $0.910$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(2\) | \(2\) | \(0\) | \(8\) | \(q+(1-\beta _{2})q^{2}+(-\beta _{1}+\beta _{2}+\beta _{3})q^{3}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(114, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(114, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)