Defining parameters
Level: | \( N \) | \(=\) | \( 1152 = 2^{7} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1152.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(35\) | ||
Distinguishing \(T_p\): | \(23\), \(37\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1152, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 224 | 16 | 208 |
Cusp forms | 160 | 16 | 144 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1152, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1152.2.c.a | $4$ | $9.199$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta_{2}+\beta_1)q^{5}+(-2\beta_{2}+\beta_1)q^{7}+\cdots\) |
1152.2.c.b | $4$ | $9.199$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta_{2}+\beta_1)q^{5}+(2\beta_{2}-\beta_1)q^{7}+\cdots\) |
1152.2.c.c | $4$ | $9.199$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta_{2}+\beta_1)q^{5}+(-2\beta_{2}+\beta_1)q^{7}+\cdots\) |
1152.2.c.d | $4$ | $9.199$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta_{2}+\beta_1)q^{5}+(2\beta_{2}-\beta_1)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1152, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1152, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)