Properties

Label 1152.2.c
Level $1152$
Weight $2$
Character orbit 1152.c
Rep. character $\chi_{1152}(1151,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $4$
Sturm bound $384$
Trace bound $35$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(384\)
Trace bound: \(35\)
Distinguishing \(T_p\): \(23\), \(37\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1152, [\chi])\).

Total New Old
Modular forms 224 16 208
Cusp forms 160 16 144
Eisenstein series 64 0 64

Trace form

\( 16 q - 16 q^{25} - 80 q^{49} + 64 q^{73} + 128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1152, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1152.2.c.a 1152.c 12.b $4$ $9.199$ \(\Q(\zeta_{8})\) None 1152.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{5}+(-2\beta_{2}+\beta_1)q^{7}+\cdots\)
1152.2.c.b 1152.c 12.b $4$ $9.199$ \(\Q(\zeta_{8})\) None 1152.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{5}+(2\beta_{2}-\beta_1)q^{7}+\cdots\)
1152.2.c.c 1152.c 12.b $4$ $9.199$ \(\Q(\zeta_{8})\) None 1152.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{5}+(-2\beta_{2}+\beta_1)q^{7}+\cdots\)
1152.2.c.d 1152.c 12.b $4$ $9.199$ \(\Q(\zeta_{8})\) None 1152.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{5}+(2\beta_{2}-\beta_1)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1152, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1152, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)