Defining parameters
Level: | \( N \) | \(=\) | \( 1152 = 2^{7} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1152.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(25\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1152, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 416 | 32 | 384 |
Cusp forms | 352 | 32 | 320 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(1152, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(1152, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1152, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)