Properties

Label 1152.3.e
Level $1152$
Weight $3$
Character orbit 1152.e
Rep. character $\chi_{1152}(1025,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $8$
Sturm bound $576$
Trace bound $25$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1152.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(576\)
Trace bound: \(25\)
Distinguishing \(T_p\): \(5\), \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1152, [\chi])\).

Total New Old
Modular forms 416 32 384
Cusp forms 352 32 320
Eisenstein series 64 0 64

Trace form

\( 32 q - 160 q^{25} + 96 q^{49} + 640 q^{73} - 768 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1152, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1152.3.e.a 1152.e 3.b $4$ $31.390$ \(\Q(\sqrt{-2}, \sqrt{-11})\) None 1152.3.e.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{5}-2q^{7}+(6\beta _{1}-2\beta _{3})q^{11}+\cdots\)
1152.3.e.b 1152.e 3.b $4$ $31.390$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 1152.3.e.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{2})q^{5}+(-2+2\beta _{3})q^{7}+\cdots\)
1152.3.e.c 1152.e 3.b $4$ $31.390$ \(\Q(\sqrt{-2}, \sqrt{-11})\) None 1152.3.e.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{5}-2q^{7}+(6\beta _{1}-2\beta _{3})q^{11}+\cdots\)
1152.3.e.d 1152.e 3.b $4$ $31.390$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 1152.3.e.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{2})q^{5}+(-2+2\beta _{3})q^{7}+\cdots\)
1152.3.e.e 1152.e 3.b $4$ $31.390$ \(\Q(\sqrt{-2}, \sqrt{-11})\) None 1152.3.e.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{5}+2q^{7}+(-6\beta _{1}+2\beta _{3})q^{11}+\cdots\)
1152.3.e.f 1152.e 3.b $4$ $31.390$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 1152.3.e.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{2})q^{5}+(2-2\beta _{3})q^{7}+(-2\beta _{1}+\cdots)q^{11}+\cdots\)
1152.3.e.g 1152.e 3.b $4$ $31.390$ \(\Q(\sqrt{-2}, \sqrt{-11})\) None 1152.3.e.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{5}+2q^{7}+(-6\beta _{1}+2\beta _{3})q^{11}+\cdots\)
1152.3.e.h 1152.e 3.b $4$ $31.390$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 1152.3.e.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{2})q^{5}+(2-2\beta _{3})q^{7}+(-2\beta _{1}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(1152, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1152, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)