Defining parameters
Level: | \( N \) | \(=\) | \( 1152 = 2^{7} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1152.v (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 32 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Sturm bound: | \(768\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(1152, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2368 | 244 | 2124 |
Cusp forms | 2240 | 236 | 2004 |
Eisenstein series | 128 | 8 | 120 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(1152, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(1152, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(1152, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)