Properties

Label 1156.1.l
Level $1156$
Weight $1$
Character orbit 1156.l
Rep. character $\chi_{1156}(67,\cdot)$
Character field $\Q(\zeta_{34})$
Dimension $16$
Newform subspaces $1$
Sturm bound $153$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1156.l (of order \(34\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1156 \)
Character field: \(\Q(\zeta_{34})\)
Newform subspaces: \( 1 \)
Sturm bound: \(153\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1156, [\chi])\).

Total New Old
Modular forms 48 48 0
Cusp forms 16 16 0
Eisenstein series 32 32 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q + q^{2} - q^{4} - 17 q^{5} + q^{8} + q^{9} + 2 q^{13} - q^{16} - q^{17} - q^{18} + 16 q^{25} - 2 q^{26} + q^{32} + q^{34} + q^{36} + q^{49} + q^{50} - 15 q^{52} - 2 q^{53} - q^{64} - q^{68}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1156, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1156.1.l.a 1156.l 1156.l $16$ $0.577$ \(\Q(\zeta_{34})\) $D_{34}$ \(\Q(\sqrt{-1}) \) None 1156.1.l.a \(1\) \(0\) \(-17\) \(0\) \(q-\zeta_{34}^{10}q^{2}-\zeta_{34}^{3}q^{4}+(-1+\zeta_{34}^{8}+\cdots)q^{5}+\cdots\)