Defining parameters
Level: | \( N \) | \(=\) | \( 1156 = 2^{2} \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1156.m (of order \(34\) and degree \(16\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1156 \) |
Character field: | \(\Q(\zeta_{34})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(153\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1156, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 48 | 0 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 32 | 32 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1156, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1156.1.m.a | $16$ | $0.577$ | \(\Q(\zeta_{34})\) | $D_{17}$ | \(\Q(\sqrt{-1}) \) | None | \(-1\) | \(0\) | \(15\) | \(0\) | \(q+\zeta_{34}^{6}q^{2}+\zeta_{34}^{12}q^{4}+(1-\zeta_{34}^{15}+\cdots)q^{5}+\cdots\) |