Defining parameters
Level: | \( N \) | = | \( 1156 = 2^{2} \cdot 17^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 10 \) | ||
Sturm bound: | \(332928\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1156))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 125848 | 72692 | 53156 |
Cusp forms | 123848 | 71956 | 51892 |
Eisenstein series | 2000 | 736 | 1264 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1156))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
1156.4.a | \(\chi_{1156}(1, \cdot)\) | 1156.4.a.a | 1 | 1 |
1156.4.a.b | 2 | |||
1156.4.a.c | 2 | |||
1156.4.a.d | 2 | |||
1156.4.a.e | 2 | |||
1156.4.a.f | 2 | |||
1156.4.a.g | 3 | |||
1156.4.a.h | 4 | |||
1156.4.a.i | 6 | |||
1156.4.a.j | 12 | |||
1156.4.a.k | 12 | |||
1156.4.a.l | 20 | |||
1156.4.b | \(\chi_{1156}(577, \cdot)\) | 1156.4.b.a | 2 | 1 |
1156.4.b.b | 2 | |||
1156.4.b.c | 4 | |||
1156.4.b.d | 4 | |||
1156.4.b.e | 6 | |||
1156.4.b.f | 6 | |||
1156.4.b.g | 20 | |||
1156.4.b.h | 24 | |||
1156.4.e | \(\chi_{1156}(829, \cdot)\) | n/a | 136 | 2 |
1156.4.h | \(\chi_{1156}(733, \cdot)\) | n/a | 268 | 4 |
1156.4.i | \(\chi_{1156}(75, \cdot)\) | n/a | 3128 | 8 |
1156.4.k | \(\chi_{1156}(69, \cdot)\) | n/a | 1216 | 16 |
1156.4.n | \(\chi_{1156}(33, \cdot)\) | n/a | 1216 | 16 |
1156.4.p | \(\chi_{1156}(13, \cdot)\) | n/a | 2432 | 32 |
1156.4.q | \(\chi_{1156}(9, \cdot)\) | n/a | 4928 | 64 |
1156.4.t | \(\chi_{1156}(3, \cdot)\) | n/a | 58496 | 128 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1156))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(1156)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(289))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(578))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1156))\)\(^{\oplus 1}\)