Properties

Label 1156.4
Level 1156
Weight 4
Dimension 71956
Nonzero newspaces 10
Sturm bound 332928
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 10 \)
Sturm bound: \(332928\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1156))\).

Total New Old
Modular forms 125848 72692 53156
Cusp forms 123848 71956 51892
Eisenstein series 2000 736 1264

Trace form

\( 71956 q - 120 q^{2} - 120 q^{4} - 240 q^{5} - 120 q^{6} - 120 q^{8} - 240 q^{9} - 120 q^{10} + 224 q^{11} - 120 q^{12} - 304 q^{13} - 120 q^{14} - 672 q^{15} - 136 q^{16} - 384 q^{17} - 232 q^{18} - 160 q^{19}+ \cdots + 32144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1156))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1156.4.a \(\chi_{1156}(1, \cdot)\) 1156.4.a.a 1 1
1156.4.a.b 2
1156.4.a.c 2
1156.4.a.d 2
1156.4.a.e 2
1156.4.a.f 2
1156.4.a.g 3
1156.4.a.h 4
1156.4.a.i 6
1156.4.a.j 12
1156.4.a.k 12
1156.4.a.l 20
1156.4.b \(\chi_{1156}(577, \cdot)\) 1156.4.b.a 2 1
1156.4.b.b 2
1156.4.b.c 4
1156.4.b.d 4
1156.4.b.e 6
1156.4.b.f 6
1156.4.b.g 20
1156.4.b.h 24
1156.4.e \(\chi_{1156}(829, \cdot)\) n/a 136 2
1156.4.h \(\chi_{1156}(733, \cdot)\) n/a 268 4
1156.4.i \(\chi_{1156}(75, \cdot)\) n/a 3128 8
1156.4.k \(\chi_{1156}(69, \cdot)\) n/a 1216 16
1156.4.n \(\chi_{1156}(33, \cdot)\) n/a 1216 16
1156.4.p \(\chi_{1156}(13, \cdot)\) n/a 2432 32
1156.4.q \(\chi_{1156}(9, \cdot)\) n/a 4928 64
1156.4.t \(\chi_{1156}(3, \cdot)\) n/a 58496 128

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1156))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1156)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(289))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(578))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1156))\)\(^{\oplus 1}\)