Properties

Label 116.4.a
Level 116116
Weight 44
Character orbit 116.a
Rep. character χ116(1,)\chi_{116}(1,\cdot)
Character field Q\Q
Dimension 77
Newform subspaces 33
Sturm bound 6060
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 116=2229 116 = 2^{2} \cdot 29
Weight: k k == 4 4
Character orbit: [χ][\chi] == 116.a (trivial)
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 6060
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(116))M_{4}(\Gamma_0(116)).

Total New Old
Modular forms 48 7 41
Cusp forms 42 7 35
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

222929FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++14140014141212001212220022
++--1111001111990099220022
-++-10102288992277110011
--++1313558812125577110011
Plus space++27275522222424551919330033
Minus space-21212219191818221616330033

Trace form

7q12q7+105q9+8q11+60q13+152q15+110q174q19+88q21+92q23+215q25+36q27+87q29+288q31366q33476q3598q371016q39+132q99+O(q100) 7 q - 12 q^{7} + 105 q^{9} + 8 q^{11} + 60 q^{13} + 152 q^{15} + 110 q^{17} - 4 q^{19} + 88 q^{21} + 92 q^{23} + 215 q^{25} + 36 q^{27} + 87 q^{29} + 288 q^{31} - 366 q^{33} - 476 q^{35} - 98 q^{37} - 1016 q^{39}+ \cdots - 132 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(116))S_{4}^{\mathrm{new}}(\Gamma_0(116)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 29
116.4.a.a 116.a 1.a 22 6.8446.844 Q(13)\Q(\sqrt{13}) None 116.4.a.a 00 00 10-10 20-20 - ++ SU(2)\mathrm{SU}(2) qβq3+(5+2β)q5+(10+4β)q7+q-\beta q^{3}+(-5+2\beta )q^{5}+(-10+4\beta )q^{7}+\cdots
116.4.a.b 116.a 1.a 22 6.8446.844 Q(22)\Q(\sqrt{22}) None 116.4.a.b 00 1010 3030 00 - - SU(2)\mathrm{SU}(2) q+(5+β)q3+15q52βq7+(20+10β)q9+q+(5+\beta )q^{3}+15q^{5}-2\beta q^{7}+(20+10\beta )q^{9}+\cdots
116.4.a.c 116.a 1.a 33 6.8446.844 3.3.148344.1 None 116.4.a.c 00 10-10 20-20 88 - - SU(2)\mathrm{SU}(2) q+(3β1)q3+(7+β2)q5+(4+)q7+q+(-3-\beta _{1})q^{3}+(-7+\beta _{2})q^{5}+(4+\cdots)q^{7}+\cdots

Decomposition of S4old(Γ0(116))S_{4}^{\mathrm{old}}(\Gamma_0(116)) into lower level spaces

S4old(Γ0(116)) S_{4}^{\mathrm{old}}(\Gamma_0(116)) \simeq S4new(Γ0(29))S_{4}^{\mathrm{new}}(\Gamma_0(29))3^{\oplus 3}\oplusS4new(Γ0(58))S_{4}^{\mathrm{new}}(\Gamma_0(58))2^{\oplus 2}