Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M4(Γ0(116)).
|
Total |
New |
Old |
Modular forms
| 48 |
7 |
41 |
Cusp forms
| 42 |
7 |
35 |
Eisenstein series
| 6 |
0 |
6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 29 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 14 | 0 | 14 | | 12 | 0 | 12 | | 2 | 0 | 2 |
+ | − | − | | 11 | 0 | 11 | | 9 | 0 | 9 | | 2 | 0 | 2 |
− | + | − | | 10 | 2 | 8 | | 9 | 2 | 7 | | 1 | 0 | 1 |
− | − | + | | 13 | 5 | 8 | | 12 | 5 | 7 | | 1 | 0 | 1 |
Plus space | + | | 27 | 5 | 22 | | 24 | 5 | 19 | | 3 | 0 | 3 |
Minus space | − | | 21 | 2 | 19 | | 18 | 2 | 16 | | 3 | 0 | 3 |
Decomposition of S4new(Γ0(116)) into newform subspaces
Decomposition of S4old(Γ0(116)) into lower level spaces