Defining parameters
Level: | \( N \) | \(=\) | \( 116 = 2^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 116.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(116))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 7 | 41 |
Cusp forms | 42 | 7 | 35 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(29\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(5\) |
Plus space | \(+\) | \(5\) | |
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(116))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 29 | |||||||
116.4.a.a | $2$ | $6.844$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(0\) | \(-10\) | \(-20\) | $-$ | $+$ | \(q-\beta q^{3}+(-5+2\beta )q^{5}+(-10+4\beta )q^{7}+\cdots\) | |
116.4.a.b | $2$ | $6.844$ | \(\Q(\sqrt{22}) \) | None | \(0\) | \(10\) | \(30\) | \(0\) | $-$ | $-$ | \(q+(5+\beta )q^{3}+15q^{5}-2\beta q^{7}+(20+10\beta )q^{9}+\cdots\) | |
116.4.a.c | $3$ | $6.844$ | 3.3.148344.1 | None | \(0\) | \(-10\) | \(-20\) | \(8\) | $-$ | $-$ | \(q+(-3-\beta _{1})q^{3}+(-7+\beta _{2})q^{5}+(4+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(116))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(116)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 2}\)