Defining parameters
Level: | \( N \) | \(=\) | \( 1160 = 2^{3} \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1160.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(720\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(1160, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 548 | 126 | 422 |
Cusp forms | 532 | 126 | 406 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(1160, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(1160, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(1160, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)