Properties

Label 1169.1
Level 1169
Weight 1
Dimension 26
Nonzero newspaces 1
Newform subspaces 3
Sturm bound 111552
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1169 = 7 \cdot 167 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 3 \)
Sturm bound: \(111552\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(1169))\).

Total New Old
Modular forms 1032 850 182
Cusp forms 36 26 10
Eisenstein series 996 824 172

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 22 0 4 0

Trace form

\( 26 q - 2 q^{3} - 9 q^{4} - 2 q^{7} - 11 q^{9} + 2 q^{11} + 2 q^{12} - 13 q^{16} + 4 q^{21} - 9 q^{25} - 4 q^{27} - 4 q^{28} + 4 q^{29} + 2 q^{31} + 2 q^{33} + 22 q^{36} + 22 q^{42} + 9 q^{44} + 2 q^{47}+ \cdots + 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(1169))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1169.1.b \(\chi_{1169}(335, \cdot)\) None 0 1
1169.1.d \(\chi_{1169}(834, \cdot)\) None 0 1
1169.1.f \(\chi_{1169}(333, \cdot)\) 1169.1.f.a 2 2
1169.1.f.b 4
1169.1.f.c 20
1169.1.h \(\chi_{1169}(502, \cdot)\) None 0 2
1169.1.j \(\chi_{1169}(15, \cdot)\) None 0 82
1169.1.l \(\chi_{1169}(6, \cdot)\) None 0 82
1169.1.n \(\chi_{1169}(3, \cdot)\) None 0 164
1169.1.p \(\chi_{1169}(23, \cdot)\) None 0 164

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(1169))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(1169)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(167))\)\(^{\oplus 2}\)